Reimagine your solution

HisenseVRF

Qingdao Hisense Hitachi Air-conditioning Marketing Co., Ltd. Add: 17, Donghai Xi Road, Qingdao, China.

http://www.hisense-vrf.com

CECB (B) (HCAC-CA-2018SS05)

Qingdao Hisense Hitachi Air-conditioning Systems Co.,Ltd. Add:Hisense Information Industry Park 218, Qianwangang Road, Qingdao Economic Development Zone, China

f @HisenseVRFGlobal in Hisense VRF

* Design and specifications are subject to change without notice. Pictures and diagrams are for reference only and are subject to change without notice.

37

OUTDOOR UNITS

49 INDOOR UNITS

- 03 HIGH EFFICIENCY STRONG HEATING PERFORMANCE
- 11 STABLE OPERATION WITH HIGH INTELLIGENCE

USER-FRIENDLY EXPERIENCE

23

01 HI-FLEXI S

32 PRODUCT DESIGN AND INSATALLATION WITH HIGH FLEXIBILITY

62 CONTROL SYSTEM WITH HIGH INTELLIGENCE

HIGH **EFFICIENCY** STRONG HEATING PERFORMANCE

Statistics shows that the central air conditioning consumes 40% to 60% energy of the entire building therefore energy-saving air-conditioning is essential for the modern building. Hisense Hi-FLEXi S series is our new advanced system which uses a new generation of enhanced vapor injection compressor and applies all DC inverter energy saving technology. The S series has more powerful heating capacity and is more energy efficient therefore perfectly meeting the energy-saving needs of the central air conditioning market.

New Generation of Enhanced Vapor Injection Scroll Compressors

Hisense Hi-FLEXi S series adopts a new generation of the high efficiency scroll compressor with the patented vapor injection technology*1. It can greatly enhances the heating performance and achieves high energy-saving efficiency. Powerful heating is guaranteed with the Hisense S series, especially in low temperature conditions where heating capacity is increased by up to 25%, compared with the normal model.

Note: *1. National patent acceptance number: a heat exchange cycle system and control methods and air conditioning, 201610909006.X

Asymmetrical Scroll Structure

The asymmetric scroll structure effectively reduces refrigerant gas leakage during suction and compression and enhances operation efficiency and reliability.

New Suction Structure Increase efficiency at high speed and stability under large capacity. Release Valve Increase efficiency by reducing compression loss especially for medium and low capacity conditions. Injection Valve Heating performance improvement under partial load conditions by injection valve. New Scroll Shape High efficiency by asymmetric scroll shape. **Compliant Frame Mechanism** High performance technology by reduce leakage loss and friction loss. Featured Discharge System High reliability due to minimum oil loss at any condtion due to refrigerant flow out from center of Oil Equalization Mechanism Capacity can be enlarged by plural compressors and oil balance between plural compressors **High Efficiency Motor** High efficiency by rare earth magnet and special designed motor. Oil Seperation High reliability by keeping oil in the compressor by this separation plate High Reliability Oil Supply System Oil supply system using pressure differ ence without any problem even at low speed or partial load condition PVE Oil Using PVE oil ensuring a high reliable and long life.

- A special design of double back pressure chambers' structure to improve energy efficiency and reliability of the compressor.
- The new involute scroll, using advanced materials, effectively reducing the friction and refrigerant gas leakage loss (ie, mechanical loss and pressure loss), and improves efficiency and reliability of the overall operation.
- The high pressure chamber design inhales directly reducing the loss of inspiratory overheating when compared to the low-pressure chamber compressor. This design greatly improves the compression efficiency.
- The compressor unloader valve effectively prevents over-compression of gas in the cavity and the increase of power consumption caused by the excessive exhaust pressure. This greatly improves the operation efficiency of the compressor at low and medium frequency so that the compressor runs more efficiently and steadily.

The concentrated winding stator lowers the copper loss and increases higher compressor efficiency; the stator coil applies "keel motor" manufacturing techinique to enhance the compressor COP, and to further enhance the compressor efficiency under low load

The new 6-pole high efficiency rubidium magnet rotor core of motor rotor improves the motor efficiency and reduces noise of the motor.

Powerful Heating Capacity in Low Temperature

The system uses the vapor injection two-stage compression technology with intelligent defrost technology to achieve strong heating efficiency at low ambients which ensures the strong heating capacity even under -15°C. This enables the system to reach the set temperature quickly and efficiently. Energy saving and the environmental protection effect can therefore be guaranteed by Hi-Flexi S series.

Rapid Heating in Low Ambients With High Outlet Air Temperature

When the Hi-FLEXi S Series is operating under a low outdoor ambient of -15 °C, the outlet air temperature of the indoor unit can reach to 40 °C or higher* in a short time. The outdoor unit has a fast and powerful heating performance, so it can offer you a warm and comfortable environment in cold conditions.

This experimental result is based on the 10HP outdoor unit and 2 indoor units

Experimental conditions: Outdoor suction temperature: -15 °C(dry bulb), Relative humidity:75%, Indoor unit suction temperature: 20°C(dry bulb), high air volume. Length of indoor and outdoor pipes: 6 meters. Measurement sites: constant laboratory.

Note: The actual heating time is diverse from the heat load, selected models and building maintenance structures

Wide Operating Range Meets Greater Demand

With a wide operating temperature range, the outdoor unit can operate from -25°C to 16.5°C. The heating effect in winter is strong, which perfectly meets the customers' needs in different environments. The unit is able to operate in -25°C ambient, when the unit is heating mode. and also operate at 52°C ambient in cooling mode.

Rapid Heating Start-up

Combing the soft start of DC inverter compressor and rapid start of fixed speed compressor, the system can achieve 100% heating capacity output instantly to meet the air conditioning demand.

The New G-type Heat Exchanger, More Efficient and Powerful

The outdoor unit is equipped with a newly designed high-efficiency G-type heat exchanger, which greatly enlarges the heat exchange area and the efficiency. By using double electronic expansion valves in the shunt system, the heat exchanger achieves partition control, the refrigerant load distribution is more reliable and therefore the overall heat transfer performance is extremely efficient. The heat exchanger, using the internal thread copper of high thermal conductivity with the diameter of Φ 7.0mm and new fins reduces the air flow resistance and makes heat transfer more equably and greatly improves heat transfer efficiency. The decrease in the frosting amount of the heat exchanger in winter greatly improves the heating efficiency. Through a specially designed refrigerant flow process of two-in-one-out, the heat exchanger is more efficient and effectively improves the subcooling degree of the system.

- Optimized Refrigerant Circuit

Using high precision imported equipment, our Hisense manufactured heat exchangers are of the highest quality. The non-expansion tube technology avoids reduced lifetime reliability caused by th stretching of copper pipes. The multi-column Φ 7 refrigerant tubes effectively increase the heat exchange area and improve the heat exchanging efficiency.

- High-efficiency Inner Grooved Tube and Stepped Fins

Hisense new step-like high-efficiency heat transfer coils use new low-pressure-loss fins and copper tubes.

Hierarchical diagram of hydrophilic aluminum foil

- Improved Super-cooling

The optimization of finned tubes, increasing of fins number and reducing of height on the basis of traditional secondary super-cooler reduces its pressure loss, increases coefficient of heat conduction and improves super-cooling performance.

The heat transfer efficiency improves 10%

The diagram of heat deliver efficiency

- Not easy to frost in heating mode;
- Slow down the corrosion of heat exchanger by corrosive gases;
- Destroying the surface tension of water droplets accelerates the down flow speed of defrost water or condensate water and improves the air conditioning performance.

The ventilation resistance reduces 20%

Two-stage Sub-cooling; Bigger Capacity and Longer Pipe

The Cooling section of the outdoor heat exchanger is uniquely designed to be more effective than the traditional outdoor units of the multi-split air conditioner without a sub-cooling design. First stage sub-cooling can lower tempertaure by 12.5°C whilst two stage sub-cooling can reduce the temperature by 27°C thus realizing as a far more efficient re-cooler.

- $\ensuremath{\mathbb{O}}$ Increasing cooling capacity of the unit refrigerant
- $\ensuremath{\bigcirc}$ Reducing the resistance when refrigerant flowing in pipelines
- \odot Increasing sub-cooling degree, more accurate controlling of electronic expansion valve, more stable operation
- $\ensuremath{\mathbb O}$ Increasing sub-cooling degree , increasing the length of refrigerant pipe

Intelligent Defrosting, Efficient and Powerful Heating

Hisense Hi-FLEXi S series upgrades its intelligent defrosting technology, optimizes the defrosting control, and has a variety of intelligent defrosting modes which can be selected for different regions to realize the best defrosting operation whilst shortening defrosting time and guaranteeing better hearting effect. According to the outdoor temperature sensor, heat exchanger sensor and evaporation pressure sensor of the heat exchanger, the outdoor unit can defrost with variable parameters, accurately seizing the opportunity to defrost, and effectively solve the problems related to defrosting in winter. As a result, the outdoor unit will not frost frequently, and the amount of frost per unit time significantly reduces only accounting for 1/3 of the frost under ordinary defrost mode, therefore, ensuring the heating effect in winter. A unique frost-proof structure at the bottom and a two-in-one-out heat exchanger ensure that there is no frost at the bottom of the outdoor heat exchanger and the ice water mixture left along the fins can be fully heated to the liquid state and drained through the bottom drainage holes to avoid the poor heating performance caused by frost accumulation.

The ordinary defrost mode of the multi-split air conditioner only refers to time, temperature of the outdoor temperature sensor and temperature of the heat exchanger sensor, while Hisense's pressure-based-defrost mode, based on all above, innovatively introduces the pressure sensor to sense the pressure signal (Pressure) to defrost through variable parameters such as pressure, temperature and time parameters at best time.

- New Anti-frosting Design at The Bottom

Advanced design for protection against frost at the bottom ensures the outdoor heat exchanger to be frost-free while heating in winter. The ice water mixture left on the fins can be fully heated to be liquid while defrosting and be discharged through drain holes in the base, avoiding poor heating results caused by frost accumulation on the coil.

Defrosting at the Bottom When Heating

Multi-electronic Expansion Valve Control Technology

There are more than one high-precision electronic expansion valves installed in the outdoor unit. The electronic expansion valve can quickly respond to the changes of the outdoor environment and indoor load. The unit refrigerant flow can be regulated by the indoor electronic expansion valve. With the control range of 2000 steps, the indoor temperature fluctuation is minimal and the indoor environment is more comfortable.

STABLE OPERATION WITH HIGH INTELLIGENCE

Hisense Hi-FLEXi S series has an innovative structure appearance. It applies a variety of intelligent technologies which achieves intelligent operation from component selection to unit operation. A full range of controls ensure the stability of the system and due to the high level of technical support platform from Hisense VRF the operation is more reliable and efficient.

Full DC Inverter Energy-saving Technology, High Energy Efficient and Reliable

DC Frequency Inverter Technology in Compressor

Stepless Frequency Conversion Control Technology

Hisense VRF adopts a high-precision inverter compressor with an adjustment range of 0-450Hz and the control accuracy is 0.01Hz. The operating speed of outdoor DC inverter compressor can be adjusted continuously and freely, which does not only improve user experience, but also enhances the energy efficiency of the unit.

The Latest Dual FOC 180 Degree Sine Wave DC Variable Speed Drive Technology

Using the top inverter controller of the industry, this product is an upgraded version of the current mainstream IGBT inverter controller. With small size, high precision, and internal self-protection control (over voltage, under voltage, phase, phase error, over current, overheating, etc.), the inverter controller is significantly improved in control accuracy and reliability.

New Generation of Power Sharing CIB Dual-module Inverter-driven Technology

The inverter adopts double FOC 180° vector sine wave drive algorithm to drive the compressor motor in dual mode and possesses various protective functions against over current, over voltage, under voltage, short circuit, modules and heat sinks temperatures, power phase loss, bus voltage fluctuations and communication failures to ensure the efficiency and reliability. In the high frequency band, the two-phase over-modulation technology improves the utilization of the voltage, and increases a substantial output voltage and then reduces the module current so as to greatly decrease the module's heat loss. In the low frequency band, the torque compensation technology reduces the compressor vibration and the machine noise and greatly improves the module's reliability and efficiency. At the same time, the integrated CIB module also makes the electrical system and electrical box with a better layout and better design, this effectively reduces the electromagnetic interference and further improves the reliability of the drive module.

Fans of Outdoor Units With Variable Speed Control, More Efficient and More Stable

DC variable speed motor are used on outdoor fans which increases the motor efficiency by 40 percent and significantly reduces the power consumption. Matching the stepless frequency conversion technology of the compressor the fans carry out stepless speed control with high precision influenced by the environmental conditions and air conditioning load conditions therefore ensuring that the system runs more steadily and reliably.

- Stepless Frequency Conversion Speed Control of Fan

Ensure stability of compressor discharge pressure and suction pressure to improve unit reliability:

Ensure stability of unit dynamic distribution of refrigerant flow and capacity of indoor unit;

Quickly control response speed of system to better meet the needs of load changes of the air conditioner.

- Fan Protection

Convection

Instantaneous reverse rotation with sudden increased torque may cause damage to the blades

External forces make the fan Counter-rotate

External forces make the fan Counter-rotate

the fan stops before the unit starts

Forward rotation with small starting torque, protect fan blades

Brand New Appearance, Fashionable & Durable

The strong frame and thick steel support for the motors guarantee operation stability and reliability. The panels of the outdoor unit and the mechanical compartment can be disassembled and installed separately which provides convenience for the installation, maintenance and trouble shooting of the unit. Ventilation holes on the side panels of the outdoor unit can effectively reduce the ventilation resistance, increasing the ventilation volume thus enhancing the heat exchange efficiency of the heat exchanger.

Patented 360° Perfectly Fitted Refrigerant Cooling Technology, More Reliable Cooling System

With the patented 360° refrigerant cooling technology, Hi-FLEXi S Series will stably and efficiently remove the heat from the main control board, inverter module and outdoor unit's electric box to improve the electrical reliability of the unit when operating under high ambient conditions. This ensures stability and safety of operation and also, it prevents poor heat dissipation caused by the fan cycle rotation or during stop mode.

○The refrigerant heat sink is made by aluminum alloy with high thermal conductivity, and the internal mechanical tube expansion processing makes the copper tube 360 °fitting. O A thermal pad is added between the refrigerant radiator and the heat sink built-in the electrical component to increase the heat transfer efficiency. Made by imported lead-free solder film with high thermal conductivity, the thermal pads greatly improve the overall performance.

National Patent Number 1. Processing method of refrigerant radiator, air conditioning and refrigerant cooling, 201710413663.X 2.Refrigerant heat sink and air conditioning, 201720645923.

3. Testing device and method of a refrigerant radiator, 201710456157.9 4. Testing device and method for refrigerant heat sink, 201710601662.8

Accurate Self-diagnosis and Self-regulation for System Pressure and Temperature

Fast and Accurate Pressure Sensing Technology

Incorporating high precession pressure sensors the outdoor unit can control the system pressure with optimal accuracy. Real time data collection being fed back to the main PCB results in accurate control of the system pressure enabling efficient and reliable operation.

Combined with compressor frequency control, fan operating speed and electronic expansion valve opening degree, the pressure sensing technology adjusts the condensing pressure and evaporation pressure of the system to an optimal condition, therefore, ensuring stable operation, timely protection and a longer life for the unit.

Compressor Frequency Control

Fan Operation Control

- 32-bit MCU and High-speed Transfer Bus

32-bit MCU data processing combining with the high-speed transmission bus can do multitasking of signal processing including outdoor unit control, indoor unit control, temperature control, compressor frequency and fan speed enabling the system to maintain the stability while ensuring efficient operation and realizing non-polarized communications of high speed and high efficiency.

Pressure Sensor

32-bit MCU Data Processing

- Flow Control

Utilizing the microcomputer electronic expansion valve, the indoor unit incorporates automatic regulation function of 2000-level which can carry out precise automatic flow regulation with a more accurate temperature regulation and better energy-saving according to the actual indoor load.

- Temperature Sensing

The multi-point temperature sensors can carry out real-time detection and feedback about the outside temperature, indoor temperature and outlet air temperature therefore analyzing and regulating the system output through the main controller of the system.

Electronic Expansion Valve of 2000-level

Temperature Sensors

Multiple Oil Separation Circuits Ensuring High Efficiency and Reliability

Utilizing multiple oil separation technology, oil return and advanced system control the oil balance between outdoor units can be maintained ensuring the stable and reliable system operation with oil return of up to 99%.

Multistage Oil Separation Technology

With multiple oil separation technology, through components such as barrier oil separation, centrifugal oil separation and gravity oil separation in the high-pressure chamber, industry leading internal multistage oil separation is carried out. Utilizing technology of oil supply through pressure differences and intelligent oil level control maintains a stable internal oil level with only a small amount of oil loss from the compressor. After the compressor, the small amount of oil discharged is re-separated by a high-efficiency centrifugal oil separator of large capacity and a gas-liquid separator. The overall separation efficiency is up to 99.9% or more.

The First Stage Oil Return Control

Using porous oil return technology, the gas-liquid separator with a built-in high-efficiency fine mesh keeps the oil balance between modules.

- The Second Stage Oil Return Operation

The system carries out oil return operation according to the compressor operating frequency and corresponding operating time, thus avoiding oil remaining in the indoor or outdoor heat exchanger when system runs with low load for a long time causing compressor failure by the lack of refrigeration oil. The oil return operation lasts only 60 seconds, after which, it will automatically return to the former status.

When heating in winter, there is no need to change the mode to carry out oil return operation, achieving oil return without stopping operation and a better heating effect.

Two-pipe Even Oil Control

By coordinating the oil discharge and oil return in the compressor, gas-liquid separator and oil separator, the automatic balance of the lubricant between each outdoor unit can be adjusted without using oil balance pipes, which eliminates the fluctuations like system pressure, temperature etc. By eliminating oil balance pipes this simplifies, simplifying the installation and improves the operation stability and comfortability.

Intelligent & Accurate Unit Capacity Allocation

Tests show that multi-coupled air conditioning unit reaches its highest efficiency and the lowest power consumption at 40% to 75% of its full load.

Eg: Each module load distribution of 44HP unit (double module full load) at 28HP load

Hisense Hi-FLEXi S series 14HP +14HP (intermediate load)

Ordinary product: 22HP (full load) + 6HP (ultra-low load),

Load Sharing Operation Ensuring Long-life and Reliability

- Rotation Technology

Through the rotation technology, the running time of each outdoor unit is shared ensuring longer service life and durability for each system.

- Dual Backup Operation

The outdoor unit has dual emergency functions. As for the first backup, if one of the two compressors in the outdoor unit fails (12HP or more), the other compressor can run in emergency. As for the second backup, if one outdoor unit in a system of more than 16HP fails then the alternative outdoor unit can operate in emergency mode.

First Backup

Second Backup

Multiple Protections Ensuring Safer and More Stable Operation

Compressor Protection ○ Compressor suction **C** Exhaustion pressure protection ○ Compression ratio protection **O** Exhausting temperature protection **Oil return protection**

Inverter Protection

○ Inverter temperature protection **OVoltage protection**

System Protection

OVentilator pressure protection ○ Four-way valve protection \bigcirc Indoor and outdoor temperature protection ○ Subcooling protection

Electric Protection

OVoltage phase-failure O Current protection O Motor protection **O protecting from Lightning**

Automatic Repair of Electronic Control Circuit

Under adverse malfunction conditions that can cause damage to the multi-split air conditioner like extreme high temperature, excessive current, high or low refrigerant pressure, the electrical control circuit will start its automatic repair function and repair the refrigerant circuit to ensure the unit runs at an appropriate temperature, current, refrigerant pressure, thereby increasing the reliability and extending the service life of the unit.

Automaticly Protecting From Snow Accumulation

Under extreme weather of snowstorms, even if the outdoor unit is covered by snow and no signal received, the outdoor fan motor will start to run at full speed, preventing the outdoor unit from being covered by snow. When users begin to use air conditioners, the fan will turn back to the normal operation mode.

Work Diagram of Resisting Wind and Snow ction requires an optional function access * This fund

Intelligent Detection

The specially designed H-Assist device (intelligent detection assistant) can automatically detect the systems running condition. With real time monitoring, system parameters, trouble shooting and preventative maintenance can be managed.

Intelligent Judgment for Pipeline Malfunction

Based on the high pressure sensor and the low pressure sensor and combining with the compressor discharged air temperature sensor, the system can carry out real time monitor on refrigerant operation, detect and judge the pipeline problems (such as pipeline connection error, leakage, etc.) in time, avoiding further malfunction or damage.

Error Information Storage "Black Box"

Both the main computer board and the wired controller of the outdoor unit can store error information so that the maintenance personnel can detect the operation information before the malfunction and determine the cause.

Lightning Protection

The outdoor unit has advanced lightning protection module which has functions of anti-interference and lightning protection, to prevent system failure and reliable performance.

PCB Substrate

Indoor and outdoor substrates are made of double sided resin PCB board with high integration level, which make maintenance and repair simpler.

Hisense PCB board:

Epoxy resin composite substrate: double-sided printing, SMD welding, high strength, good weather resistance, great flame retardancy, high reliability, compact structure, small size.

Ordinary PCB board:

Paper-made phenolic substrate: single-sided printing, inserting welding, bad weather resistance, less flame retardancy, big size.

- Control Panel of High Reliability

The SMT sealing technology, through strict optical inspection, low temperature environment test, high temperature environment test, on-line inspection, functional inspection, and vibration and stress test, can effectively improve the anti-interference ability of the control panel without being affected by smog, sand storm, high temperature and humidity, and significantly improve the anti-corrosion performance.

Refrigerant Automatic Recycling Technology

When the system needs maintenance, the refrigerant can be automatically recycled into the storage tank, outdoor unit heat exchanger, or the side of the indoor unit.

Indoor Unit Power-down Emergency Maintenance

When a faulty indoor unit needs repairing, it can be powered off alone without affecting the entire system.

USER-FRIENDLY **EXPERIENCE**

In order to enhance user experience and pursue harmonious coexistence between human and ambient environment, Hisense Hi-FLEXi S series focuses on improving the quality of the environment by handling and controlling air temperature, humidity, speed and air cleanliness, This will create a healthy and comfortable environment for all users.

WHAT IS HIGH QUALITY MUTE?

Low decibel does not mean the true tranquility. More importantly, the control of sound guality matters. Hisense joins hand with Danish B & K and Belgium LMS Vibration Testing System to create a high standard anechoic lab(that is, echo-free anechoic chamber), strictly controlling and processing the sound, reducing various irritable high-frequency, broadband and abnormal sound to creat a more quiet environment.

15 Mute Technologies Offer You A Quiet and Comfortable Environment

- Advanced Mute Design, Ideal Mute Environment

At present, more and more people are beginning to pay attention to the quality of their living environment, which forms part of their high quality of life. Hisense central air conditioning systems are concerned about peoples physical and mental well being and therefore focus on creating the most comfortable environment by attentively creating a harmonious and healthy atmosphere.

Noise Control of Indoor Unit

Based on the application occasions of the indoor unit and its structural characteristics, R&D Personnel of Hisense do research on technical aspects and installation methods to reduce the noise levels in several aspects, such as electric fan motor, fan blades and duct layout, ensuring that users enjoy a quiet and comfortable air-conditioned environment

Note: The number is measured at low-speed operation in the non-echo muffler room.

Ordinary Product

Upgraded Hisense Product

Note: This picture shows the laboratory measurement of operating noise of Hisense indoor unit products and ordinary indoor unit products when the indoor unit air-feeding stall is set to highwind gear under standard cooling conditions, of which the Hisense product models are Type 22 thin

- 15 Mute Technologies Offer You Quiet and Comfort

The Hisense R&D personnel research is ongoing and due to continuous feedback of indoor and structural characteristics, the search for ease of installation, reduced noise levels of all components is explored. Hisense strive for excellence continues so that end users can enjoy a quiet, healthy and comfortable environment.

- New energy efficient & low noise DC inverter compressor
- DC inverter electric fan motor
- Motor supporting frame shock absorption design
- Exhaust pipe mute design
- New compressor sound insulation processing
- New air guide structure
- New high efficiency axial fan
- Refrigerant flow mute technology
- Capacity priority mode
- Night mute function
- Compressor injection circuit mute design
- Integrated CIB module, low electromagnetic noise design
- 3D simulation of pipeline shock absorption design
- Outer shell shock absorption design
- New air grille

- Automatic Mute Mode

The outdoor unit, with automatic night mute setting function and mandatory mute function, has 9 mute modes that can be selected. When the outdoor unit is set to night mute mode, the unit will operate silently according to the outdoor ambient temperature so that the minimum noise of the operation of the outdoor unit at night is only 42 dB(A), reduced by 18 dB(A) compared with daytime. (Taking product model 10HP as an example)

- Electronic Fan Motor Mute Processing

The flexible damping enclosed motor ensures more effective noise insulation. Cast aluminum is adopted as manufacturing material for the electronic fan motor so that lower noise will be obtained. The motor bracket adopts non-resonant hanger structure to ensure the stable performance of the motor and reduces the vibration noise.

- The New High Efficiency Axial Fan

The new high efficiency axial fan can reduce turbulence around the fan by up to 60% with even lower running sound. The use of noise reduction mica composite materials with good sound-absorbing effect can significantly reduce the "buzzing".

Optimize the axial air outlet angle and radial air outlet angle

Intelligent Unit Operation and Control

- Operating Mode Control

The cooling and heating control mode of the controller can be preset to avoid user's complaints because the conditioner is set differently in various rooms during transitional seasons. Once set, the unit will operate only when the preset mode is selected.

- "Preconceived" Control

When the system is in operation, if mode conflict happens on one indoor unit, "Operation Restriction" will be displayed on that indoor unit to remind the user while the rest of the units will operate without stopping or alarm indication.

- Special Vip Mode **Comfortable Private Custom**

In the system, the "VIP priority mode" can be set for important air-conditioned rooms. When the system output is limited, the VIP rooms will take the priority to be served.

- Intelligent Self-cleaning Function of Outdoor Unit, Automatic Dust Removal

When the outdoor unit is in initial operation, the fan motor runs in the reverse direction and automatically removes the dust on the heat exchanger achieving intelligent self-cleaning.

Automatic Addressing

The system automatically allocates the address to the indoor units, which is suitable for the large system with multiple indoor units, without manual dialing.

- Access Control

The function setting of room card and access control can achieve the linked control for hotel room management or smart home system. When the key card inserted the air conditioner starts to work and executes the memorized mode which can avoid waste of operation.

Automatic Restart After Power Failure

The system will automatically save the setting memory when the power off occurs for a long time. The system will restart automatically when the power is restored (or set to manual start). The set points before the power failure will not be erased but will be stored allowing the setting to take affect eliminating the need to re-set all the procedures which is more intelligent and cost effective.

- Fire Control Function

The Indoor unit function interface can be linked with the building's fire protection system. When a fire alarm beeps, the system will automatically shut down to ensure safety.

- Fault Parameters Display

The system automatically stores and displays the parameters of different diagnostics. By adjusting the main control panel keys of the outdoor unit's, four 7-segment high-brightness digital display tubes can show the real-time fault parameters, which is convenient for after sales service troubleshooting and maintenance.

New Energy-saving Operation Mode, Intelligent Power-saving Control

Due to the imbalanced demand for power supply, there will be power shortage in summer, and some cities will introduce the corresponding power rationing measures. Hisense Hi-FLEXi S series unit can automatically identify the running mode of the whole unit to provide three kinds of energy-saving modes in response to the electricity restriction because of the power shortage. Meanwhile, the new designed standby power-saving mode can automatically cut off the power supply of the inverter board, entering the power-saving mode with zero power consumption when the inverter stands by, therefore, reduce unit power consumption effectively.

The unit can be set to automatic energy-saving operation mode to reduce the power consumption, through which the maximum of 15% energy can be saved.

The unit has self-controlled power-saving mode. By limiting the operating frequency and operating current, the unit can save power respectively by 20%, 30%, 40%, and 60%.

The unit has the wave band energy-saving mode. The design of limiting power output during certain time phases can reasonablly balance comfort and energy saving and save energy up to 20%.

Environmental Protection Concerns, Creating A Low-carbon Living Space

Environment-friendly Refrigerant

Hi-FLEXi S series products use the efficient and reliable R410A green refrigerant which is non-toxic to humans and will not damage the Earth's ozone layer to create a comfortable and clean living environment for you.

- Actively Responding to The Rohs Directive

RoHS is short for Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The directive bans the use of the following six hazardous substances in electrical and electronic equipment including lead, mercury, cadmium, hexavalent chromium, polybrominated diphenyl ethers (PBDE), and PBB. Actively responding to the European RoHS Directive, Hisense has implemented a series of procedures and measures to control hazardous substances. The directive is intended to protect human health and ensure the recycling and the processing of waste electrical and electronic equipment to meet environmental requirements.

	Substances	RoHS limits	
and the second s	Lead	1000ppm	
oHS	Cadmium	100ppm	
	hexavalent Chromium	1000ppm	
	Mercury	1000ppm	
	PBB/PBDE	1000ppm	

HI-FLEXIS 30

 Typical Testing Meethods

 Wet chemical treatment or X-ray fluorescence

 GCMS,FTTR, or X-ray fluorescence

Smart Controller, Simple Human-computer Interaction

Hisense's diversified controllers are smart and exquisite with convenient and flexible practices. It allows users to choose according to their needs and brings a new feeling of comfort and intelligence.

- Outlet Temperature Sensor, Three-dimensional Temperature Sensing Design, **Precise Temperature Control**

Traditional multi-split air-conditioners control the room temperature according to the indoor return air temperature sensor. Hi-FLEXi S series adds a wired remote control temperature sensor and air temperature sensor *. The air temperature sensor, return air temperature sensor and room temperature sensor will successfully calculate the indoor temperature precisely adjusting the room supply air temperature.

- 360° Air Supply, Uniform Temperature

Hisense offers 360 degree all directional air flow functionality controlling the vane positions at allow air supply to all corners of the air-conditioned space.

DESIGN AND INSATALLATION WITH HIGH FLEXIBILITY Fully considering the real environment in engineering applications, Hisense are fully aware of the real environment in engineering applications and Hisense Hi-FLEXI S series focuses on every detail of this need. Through continuous innovation and technological upgrades the products installation flexibility has been greatly enhanced. The product is safe and convenient and meets users all-round needs with innovative flexibility. (MARICO -mining

PROB

HI-FLEXIS 32

Extra Long Pipe Enabling The Height Difference Between Indoor and Outdoor Units up to 90 Meters *

With extra long pipe, the height difference between the indoor unit and outdorr unit is up to 90 meters *, which makes installation more flexible.

*NOTE: For detailed information, please consult the technical staff.

Light Weight Making Transportation and Installation Easier

The largest size of module 28HP is only 1780mm × 1600mm × 750mm (height × width × depth), which can be delivered through freight elevator, making transportation and installation easier.

Fan Static Pressure Adaptive Technology Making Installation Space More Flexible

With static pressure adaptive technology, the fan of the outdoor unit can be adjusted in free static pressure based on system requirements to meet a variety of needs in different environments. The maximam external static pressure of the outdoor unit can be up to 110Pa *, which provides better conditions for the layered installation and centralized installation. Higher static pressure and further distance of air supply of the outdoor unit ensure the smooth flow of air and solve condensing problems of the outdoor unit effectively.

Layered installing outdoor units easily dealing with heat dissipation problem.

*Note: By the note corresponding, eternal static pressure of the outdoor unit can be up to 110Pa. For detailed information, please contact Hisense's technical staff.

Diverse Models and Super Multi-link to Cope With The Space Layout Easily

The outdoor unit is rich in capacity which can be chosen based on the actual situation of the building. The indoor unit currently has 12 models with more than 100 specifications to be chosen from and the largest model is type 280. On basis of the floor location of owners, interior decoration and use of the room, the outdoor unit can match freely with different indoor unit. An outdoor unit of 48HP can connect up to 64 indoor units to meet the needs of different house types.

good looking of facades

Air flow diagram

A Variety of Air Return Modes to Fit Different Decoration Designs of the Room

According to different construction structures and interior decoration of buildings, users can now select different duct layouts to suite recommended designer requests. The flexibility of return air applications allow Hisense to fit most interior decoration demands and meet all layout requirements.

Note:Side Supply Bottom Return will increase the noise level by 5-10 dB. It is not recommend to use in the environment which has high level requirement of noise

Simple and Convenient Wiring System

When using a variety of centralized controllers, only one communication line can connect all the air conditioners. This "one-line" connection is convenient for construction and material-saving. The non-polar twisted pair lines are used in non-polar twisted pair communication lines to avoid the wiring error of positive and negative.

Multi-state Static Pressure Adjustable for Indoor Unit

The indoor unit can be automatically adjusted to suite the static pressure for the house structure and the installation condition to ensure that it works in the most suitable exhaust state.

When the required duct is shorter,

the static pressure is lower.

When the required duct is longer, the static pressure is higher.

Refrigerant Automatic Judging and Automatic Refrigerant Charging

By judging the temperature of the outdoor environment where system is in operation, the air supply temperature and air return temperature of the indoor unit, the undercooling degree of the system, the high pressure and the low pressure of the refrigerant filling state of the outdoor unit can accurately and effectively be determined, so that the repair and maintenance become more convenient.

Float Switch Design, Ensure Decoration Safety

The new float switch can monitor the water level of the water pan in the indoor unit at any time. When the problems like blocked drainage, pump failure, insufficient slope and air block occur, the new float switch can quickly and automatically issue warning sign and stop the machine. As a result, the home life is more secure and the system is more reliable.

Advanced Commissioning Technology

There is a one-key commissioning on either side of the outdoor unit or the indoor unit to facilitate on-site commissioning adjustment and enhance the installation quality of the project site.

•Automatically detect whether the main powers of the indoor and outdoor units in reverse phase or phase loss. •Automatically detect the abnormal communication between the outdoor unit board and the inverter motherboard. Automatically detect and confirm the wrong wiring of the indoor and outdoor units. •Automatically identify the length of pipes, correct and optimize the operation based on the length of pipes. Automatically detect and confirm the operation status of the parts inside the air conditioning units such as compressors, fan motors, electronic expansion valves, four-way valves, solenoid valves, etc. to ensure that they are all in normal operation.

HP 8HP 10HP 12H						14HP	16HP	18HP			
М	odel		AVWT-76HKSS	AVWT-96HKSS	AVWT-114HKSS	AVWT-136HKSS	AVWT-154HKSS	AVWT-170HKSS			
Com	bination		_	_	_	_	_	_			
Powe	r Supply				380-415V 3N	~ 50Hz / 60Hz					
	Rated Capacity	kW	22.4	22.4 28.0 33.5 40.0 45.0				50.0			
Cooling Operation*1	Power Consumption	kW	5.21	7.00	8.65	10.53	12.50	15.63			
	EER	W/W	4.30	4.00	3.87	3.80	3.60	3.20			
	Rated Capacity	kW	25.0	31.5	37.5	45.0	50.0	56.0			
Heating Operation*1	Power Consumption	kW	5.77	7.59	9.21	11.72	13.70	16.97			
	COP	W/W	4.33	4.15	4.07	3.84	3.65	3.30			
Air Fl	ow Rate	m³/min	183	183	183	200	200	200			
Noise	e level*2	dB(A)	59	60	62	62	62	62			
Cabine	et Color* ³				Grayisl	h White					
Compre	Compressor Type Enhanced Vapor Injection Compressor										
Refrige	rant Type				R4	10A		Φ28.60 Φ15.88			
Ga	Gas Line mm			Φ22.20	Φ25.40	Φ25.40	Φ28.60	Φ28.60			
Liqu	id Line	mm	Φ9.53	Φ9.53	Φ12.70	Φ12.70	Φ12.70	Φ15.88			
	Н	mm	1730	1730	1730	1730	1730	1730			
Out Dimension	W	mm	950	950	950	1210	1210	1210			
	D	mm	750	750	750	750	750	750			
	Н	mm	1930	1930	1930	1930	1930	1930			
Packing Dimension	W	mm	1015	1015	1015	1275	1275	1275			
_	D	mm	790	790	790	790	790	790			
Max.number of	connectable IDU		13	16	19	23	26	29			
Max. Fu	se Current	A	25	32	32	40	40	50			
Max. Run	ning Current	A	17.2	22.5	23.5	28.6	33	38.6			
Net	Weight	kg	224	244	245	297	298	347			
Gross	Weight	kg	243	263	265	321	322	371			
Conne	ection Ratio				50% -	150%		-			
Compres	sor Quantity	PC	1	1	1	1	1	2			
Condense	r Fan Quantity	PC	1	1	1	2	2	2			
Height Difference Between	ODUs is Higher Than IDUs	m			50 (90* ⁴)					
ODUs and IDUs	ODUs is Lower Than IDUs	m			40 (90* ⁴)					
Height Differen	ce Between IDUs	m			3	0					
Operation Range	Cooling	DB			-5℃~	52°C* ⁵					
Operation Mange	Heating	WB			-25 °C *5.	~ 16.5°C					
Max. Total P	iping Length	m			10	00					

1	Notes:

NOLES.
1. Rated cooling capacity and rated heating capacity are tested in the following conditions: Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
2. The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
3. The final appearance of outdoor units is subject to the actual products.
4. For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
5. When the operation temperature is under 48°C~52°C or -25°C~20°C, please contact our professional engineer.

	HP		20HP	22HP	24HP	26HP	28HP
M	odel		AV/WT-190HKSS	AV/WT-212HKSS	AV/WT-232HKSS	AVWT-250HKSS	AV/WT-272HKSS
						7.0001 200111.000	
Com	bination		_	_	_	_	_
Powe	er Supply			380)-415V 3N~ 50Hz / 60	OHz	
	Rated Capacity	kW	56.0	61.5	68.0	72.5	80.0
Cooling Operation*1	Power Consumption	kW	17.90	20.50	22.82	24.58	27.59
	EER	W/W	3.13	3.00	2.98	2.95	2.90
	Rated Capacity	kW	63.0	69.0	75.0	80.0	90.0
Heating Operation*1	Power Consumption	kW	19.87	22.48	24.59	26.67	30.41
	COP	W/W	3.17	3.07	3.05	3.00	2.96
Air Flo	ow Rate	m³/min	267	296	296	350	350
Noise	e level*2	dB(A)	63	64	66	67	67
Cabine	et Color* ³				Grayish White		
Compressor Type				Enhance	d Vapor Injection Co	mpressor	
Refrigerant Type					R410A		
Gas Line		mm	Φ28.60	Φ28.60	Φ28.60	Ф31.75	Ф31.75
Liqu	id Line	mm	Φ15.88	Φ15.88	Φ15.88	Φ19.05	Φ19.05
	H	mm	1730	1730	1730	1730	1730
Out Dimension	W	mm	1350	1350	1350	1600	1600
	D	mm	750	750	750	750	750
	Н	mm	1930	1930	1930	1930	1930
Packing Dimension	W	mm	1420	1420	1420	1665	1665
Ū.	D	mm	790	790	790	790	790
Max.number of	connectable IDU		33	36	40	43	47
Max. Fu	se Current	A	63	63	63	80	80
Max. Run	ning Current	A	44.5	49.8	52.4	56.9	58.2
Net	Weight	kg	361	369	370	414	415
Gross	Weight	kg	395	396	397	446	447
Conne	ection Ratio				50% - 150%		
Compres	ssor Quantity	PC	2	2	2	2	2
Condense	r Fan Quantity	PC	2	2	2	2	2
Height Difference Between	ODUs is Higher Than IDUs	m			50 (90*4)		
ODUs and IDUs	ODUs is Lower Than IDUs	m			40 (90*4)		
Height Differen	ce Between IDUs	m			30		
0	Cooling	DB			-5°C~ 52°C* ⁵		
Operation Range	Heating	WB			-25°C*5~ 16.5°C		
Max. Total	Piping Length	m			1000		

HP 30HP 32HP 34HP						36HP	38HP			
M	odel		AVWT-290HKSS	AVWT-308HKSS	AVWT-324HKSS	AVWT-344HKSS	AVWT-360HKSS			
Com	bination		AVWT-154HKSS AVWT-136HKSS	AVWT-154HKSS AVWT-154HKSS	AVWT-170HKSS AVWT-154HKSS	AVWT-190HKSS AVWT-154HKSS	AVWT-190HKSS AVWT-170HKSS			
Powe	r Supply			380)-415V 3N~ 50Hz / 60	0Hz	HKSS AVWT-360HKSS HKSS AVWT-190HKSS HKSS AVWT-170HKSS 106.0 33.53 3.16 119.0 36.84 3.23 467 67 5 419.05 1730 50 1210+1350 750 1930 20			
	Rated Capacity	kW	85.0	90.0	95.0	101.0	106.0			
Cooling Operation*1	Power Consumption	kW	23.03	25.00	28.13	30.40	33.53			
	EER	W/W	3.69	3.60	3.38	3.32	3.16			
	Rated Capacity	kW	95.0	100.0	106.0	113.0	119.0			
Heating Operation*1	Power Consumption	kW	25.42	27.40	30.67	33.57	36.84			
	COP	W/W	3.74	3.65	3.46	3.37	3.23			
Air Flo	ow Rate	m³/min	400	400	400	467	467			
Noise	e level* ²	dB(A)	67	67	67	67	67			
Cabine	et Color* ³				Grayish White					
Compressor Type				Enhance	d Vapor Injection Co	mpressor				
Refrigerant Type				R410A						
Gas Line			Ф31.75	Φ31.75	Φ38.1	Ф38.1	Φ38.1			
Liqu	id Line	mm	Φ19.05	Φ19.05	Φ19.05	Φ19.05	Φ19.05			
	H	mm	1730	1730	1730	1730	1730			
Out Dimension	W	mm	1210+1210	1210+1210	1210+1210	1210+1350	1210+1350			
	D	mm	750	750	750	750	750			
	Н	mm	1930	1930	1930	1930	1930			
Packing Dimension	W	mm	1275+1275	1275+1275	1275+1275	1275+1420	1275+1420			
_	D	mm	790	790	790	790	790			
Max.number of	connectable IDU		49	52	55	59	62			
Max. Fu	se Current	A	80	80	100	100	100			
Max. Run	ning Current	A	61.6	66	71.6	77.5	83.1			
Net	Weight	kg	595	596	645	659	708			
Gross	s Weight	kg	643	644	693	717	766			
Conne	ection Ratio				50% - 150%					
Compres	sor Quantity	PC	2	2	3	3	4			
Condense	r Fan Quantity	PC	4	4	4	4	4			
Height Difference Between	ODUs is Higher Than IDUs	m		1	50 (90*4)					
ODUs and IDUs	ODUs is Lower Than IDUs	m			40 (90*4)					
Height Differen	ce Between IDUs	m			30					
Oneration Dance	Cooling	DB			-5°C~ 52°C*5					
Operation Range	Heating	WB			-25°C* ⁵ ~ 16.5°C					
Max. Total	Piping Length	m			1000					

Notes:
140100.

Rated cooling capacity and rated heating capacity are tested in the following conditions: Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
 The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
 The final appearance of outdoor units is subject to the actual products.
 For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
 When the operation temperature is under 48°C~52°C or -25°C~-20°C, please contact our professional engineer.

H	IP		40HP	42HP	44HP	46HP	48HP
Mc	odel		AVWT-380HKSS	AVWT-402HKSS	AVWT-422HKSS	AVWT-444HKSS	AVWT-464HKSS
Comb	Combination			AVWT-232HKSS AVWT-170HKSS	AVWT-232HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-212HKSS	AVWT-232HKSS AVWT-232HKSS
Power	Supply			380)-415V 3N~ 50Hz / 60	OHz	·
	Rated Capacity	kW	112.0	118.0	124.0	129.5	136.0
Cooling Operation*1	Power Consumption	kW	35.80	38.45	40.72	43.32	45.64
	EER	W/W	3.13	3.07	3.05	2.99	2.98
	Rated Capacity	kW	126.0	131.0	138.0	144.0	150.0
Heating Operation*1	Power Consumption	kW	39.74	41.56	44.46	47.07	49.18
	COP	W/W	3.17	3.15	3.10	3.06	3.05
Air Flo	w Rate	m³/min	534	496	563	592	592
Noise	level*2	dB(A)	67	67	68	68	69
Cabinet	t Color* ³				Grayish White		
Compressor Type				Enhance	d Vapor Injection Co	mpressor	
Refriger	Refrigerant Type				R410A		
Gas Line		mm	Φ38.1	Φ38.1	Φ38.1	Ф41.3	Ф41.3
Liqui	d Line	mm	Φ19.05	Ф19.05	Φ19.05	Φ22.2	Φ22.2
	Н	mm	1730	1730	1730	1730	1730
Out Dimension	W	mm	1350+1350	1210+1350	1350+1350	1350+1350	1350+1350
	D	mm	750	750	750	750	750
	Н	mm	1930	1930	1930	1930	1930
Packing Dimension	W	mm	1420+1420	1275+1420	1420+1420	1420+1420	1420+1420
	D	mm	790	790	790	790	790
Max.number of	connectable IDU		64	64	64	64	64
Max. Fus	se Current	A	125	125	125	125	125
Max. Runn	ning Current	A	89	91	96.9	102.2	104.8
Net V	Veight	kg	722	717	731	739	740
Gross	Weight	kg	790	768	792	793	794
Connec	ction Ratio				50% - 150%		
Compress	sor Quantity	PC	4	4	4	4	4
Condenser	Fan Quantity	PC	4	4	4	4	4
Height Difference Between	ODUs is Higher Than IDUs	m			50 (90*4)		
ODUs and IDUs	ODUs is Lower Than IDUs	m			40 (90*4)		
Height Difference	e Between IDUs	m			30		
Oneration Dance	Cooling	DB			-5°C~52°C* ⁵		
Operation Range	Heating	WB			-25°C*5~ 16.5°C		
Max. Total F	Piping Length	m			1000		

Hisense	Hisense S	Historica S	Hissone 🔄			

HP 50HP 52HP 54HP						56HP			
M	odel		AVWT-482HKSS	AVWT-504HKSS	AVWT-522HKSS	AVWT-544HKSS			
Combination			AVWT-250HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-250HKSS	AVWT-272HKSS AVWT-272HKSS			
Powe	r Supply			380-415V 3N	~ 50Hz / 60Hz				
	Rated Capacity	kW	140.5	148.0	152.5	160.0			
Cooling Operation*1	Power Consumption	kW	47.40	50.41	52.17	55.18			
	EER	W/W	2.96	2.94	2.92	2.90			
	Rated Capacity	kW	155.0	165.0	170.0	180.0			
Heating Operation*1	Power Consumption	kW	51.26	55.00	57.08	60.82			
	COP	W/W	3.02	3.00	2.98	2.96			
Air Flo	ow Rate	m³/min	646	646	700	700			
Noise	e level* ²	dB(A)	70	70	70	70			
Cabine	t Color* ³		Grayish White						
Compressor Type				Enhanced Vapor In	jection Compressor				
Refrigerant Type				R4	10A				
Gas Line		mm	Φ41.3	Φ41.3	Φ41.3	Φ41.3			
Liqu	Liquid Line		Φ22.2	Φ22.2	Φ22.2	Φ22.2			
	H	mm	1730	1730	1730	1730			
Out Dimension	W	mm	1350+1600	1350+1600	1600+1600	1600+1600			
	D	mm	750	750	750	750			
	Н	mm	1930	1930	1930	1930			
Packing Dimension	W	mm	1420+1665	1420+1665	1665+1665	1665+1665			
Ū	D	mm	790	790	790	790			
Max.number of	connectable IDU		64	64	64	64			
Max. Fu	se Current	A	160	160	160	160			
Max. Runi	ning Current	Α	109.3	110.6	115.1	116.4			
Net	Weight	kg	784	785	829	830			
Gross	Weight	kg	843	844	893	894			
Conne	ection Ratio			50% -	150%				
Compres	sor Quantity	PC	4	4	4	4			
Condense	r Fan Quantity	PC	4	4	4	4			
Height Difference Between	ODUs is Higher Than IDUs	m		50 (9	90* ⁴)				
ODUs and IDUs	ODUs is Lower Than IDUs	m		40 (9	90* ⁴)				
Height Differen	ce Between IDUs	m		3	0				
Operation Decar	Cooling	DB		-5°C~	52°C*5				
Operation Range	Heating	WB		-25°C *5~	- 16.5℃				
Max. Total	Piping Length	m		10	00				

ŀ	ΙP		58HP	60HP	62HP	64HP
M	odel		AVWT-552HKSS	AVWT-570HKSS	AVWT-592HKSS	AVWT-612HKSS
			AVWT-212HKSS	AVWT-190HKSS	AVWT-232HKSS	AVWT-232HKSS
Comb	bination		AVWT-170HKSS	AVWT-190HKSS	AVWT-190HKSS	AVWT-190HKSS
			AVWT-170HKSS	AVWT-190HKSS	AVWT-170HKSS	AVWT-190HKSS
Powe	r Supply			380-415V 3N-	~ 50Hz / 60Hz	
	Rated Capacity	kW	161.5	168.0	174.0	180.0
Cooling Operation*1	Power Consumption	kW	51.76	53.70	56.35	58.62
	EER	W/W	3.12	3.13	3.09	3.07
	Rated Capacity	kW	181.0	189.0	194.0	201.0
Heating Operation*1	Power Consumption	kW	56.42	59.61	61.43	64.33
	COP	W/W	3.21	3.17	3.16	3.12
Air Flo	ow Rate	m³/min	696	801	763	830
Noise	e level*2	dB(A)	70	70	70	70
Cabine	et Color* ³			Grayisł	White	
Compressor Type				Enhanced Vapor In	jection Compressor	
Refrigerant Type				R4	10A	
Gas Line		mm	Φ44.5	Φ44.5	Φ44.5	Φ44.5
Liquid Line		mm	Φ22.2	Φ22.2	Φ22.2	Φ22.2
	H	mm	1730	1730	1730	1730
Out Dimension	W	mm	1210+1210+1350	1350+1350+1350	1210+1350+1350	1350+1350+1350
	D	mm	750	750	750	750
	Н	mm	1930	1930	1930	1930
Packing Dimension	W	mm	1275+1275+1420	1420+1420+1420	1275+1420+1420	1420+1420+1420
	D	mm	790	790	790	790
Max.number of	connectable IDU		64	64	64	64
Max. Fu	se Current	A	160	160	160	200
Max. Run	ning Current	A	127	133.5	135.5	141.4
Net	Neight	kg	1063	1083	1078	1092
Gross	Weight	kg	1138	1185	1163	1187
Conne	ction Ratio			50% -	150%	
Compres	sor Quantity	PC	6	6	6	6
Condense	r Fan Quantity	PC	6	6	6	6
Height Difference Between	ODUs is Higher Than IDUs	m		50 (9	90* ⁴)	
ODUs and IDUs	ODUs is Lower Than IDUs	m		40 (9	90* ⁴)	
Height Differen	ce Between IDUs	m		3	0	
	Cooling	DB		-5°C~	52°C*5	
Operation Range	Heating	WB		-25°C*5-	- 16.5°C	
Max. Total	Piping Length	m		10	00	

Notes:

Rated cooling capacity and rated heating capacity are tested in the following conditions: Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
 The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
 The final appearance of outdoor units is subject to the actual products.
 For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
 When the operation temperature is under 48°C~52°C or -25°C~-20°C, please contact our professional engineer.

ŀ	ΙP		74HP	76HP	78HP	80HP			
M	odel		AVWT-714HKSS	AVWT-732HKSS	AVWT-754HKSS	AVWT-776HKSS			
			AVWT-250HKSS	AVWT-250HKSS	AVWT-272HKSS	AVWT-272HKSS			
Comb	bination		AVWT-232HKSS	AVWT-250HKSS	AVWT-250HKSS	AVWT-272HKSS			
			AVWT-232HKSS	AVWT-232HKSS	AVWT-232HKSS	AVWT-232HKSS			
Powe	r Supply			380-415V 3N-	~ 50Hz / 60Hz				
	Rated Capacity	kW	208.5	213.0	220.5	228.0			
Cooling Operation*1	Power Consumption	kW	70.22	71.98	74.99	78.00			
	EER	W/W	2.97	2.96	2.95	2.92			
	Rated Capacity	kW	230.0	235.0	245.0	255.0			
Heating Operation*1	Power Consumption	kW	75.85	77.93	81.67	85.41			
	COP	W/W	3.03	3.02	3.00	2.98			
Air Flo	ow Rate	m³/min	942	996	996	996			
Noise	e level* ²	dB(A)	71	71	71	71			
Cabine	et Color* ³			Grayisl	h White				
Compressor Type				Enhanced Vapor In	jection Compressor				
Refrigerant Type				R4 ²	10A				
Gas Line		mm	Ф50.8	Φ50.8	Φ50.8	Φ50.8			
Liqu	Liquid Line mm		Φ25.4	Φ25.4	Φ25.4	Φ25.4			
	H	mm	1730	1730	1730	1730			
Out Dimension	W	mm	1350+1350+1600	1350+1600+1600	1350+1600+1600	1350+1600+1600			
	D	mm	750	750	750	750			
	Н	mm	1930	1930	1930	1930			
Packing Dimension	W	mm	1420+1420+1665	1420+1665+1665	1420+1665+1665	1420+1665+1665			
	D	mm	790	790	790	790			
Max.number of	connectable IDU		64	64	64	64			
Max. Fu	se Current	A	200	200	200	200			
Max. Run	ning Current	A	161.7	166.2	167.5	168.8			
Net	Neight	kg	1154	1198	1199	1200			
Gross	Weight	kg	1240	1289	1290	1291			
Conne	ction Ratio			50% -	150%				
Compres	sor Quantity	PC	6	6	6	6			
Condense	r Fan Quantity	PC	6	6	6	6			
Height Difference Between	ODUs is Higher Than IDUs	m		50 (9	90* ⁴)				
ODUs and IDUs	ODUs is Lower Than IDUs	m		40 (9	90*4)				
Height Differen	ce Between IDUs	m		3	0				
Operation Dense	Cooling	DB		-5°C~	52°C*5				
Operation Range	Heating	WB		-25°C*5	~ 16.5 °C				
Max. Total	Piping Length	m		10	00				

HP			66HP	68HP	70HP	72HP			
M	odel		AVWT-634HKSS	AVWT-654HKSS	AVWT-676HKSS	AVWT-696HKSS			
Comt	pination		AVWT-232HKSS AVWT-212HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-212HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS			
Powe	r Supply			380-415V 3N	~ 50Hz / 60Hz				
	Rated Capacity	kW	185.5	192.0	197.5	204.0			
Cooling Operation*1	Power Consumption	kW	61.22	63.54	66.14	68.46			
5.1.5.7	EER	W/W	3.03	3.02	2.99	2.98			
	Rated Capacity	kW	207.0	213.0	219.0	225.0			
Heating Operation*1	Power Consumption	kW	66.94	69.05	71.66	73.77			
55.	COP	W/W	3.09	3.08	3.06	3.05			
Air Flo	ow Rate	m³/min	859	859	888	888			
Noise	e level*2	dB(A)	70	70	70	71			
Cabinet Color* ³				Grayisl	n White				
Compressor Type				Enhanced Vapor In	jection Compressor				
Refrigerant Type				R4	10A	Φ50.8			
Gas Line		mm	Φ44.5	Φ50.8	Φ50.8	Φ50.8			
Liqu	Liquid Line		Φ22.2	Φ25.4	Ф25.4	Φ25.4			
	Н	mm	1730	1730	1730	1730			
Out Dimension	W	mm	1350+1350+1350	1350+1350+1350	1350+1350+1350	1350+1350+1350			
	D	mm	750	750	750	750			
	Н	mm	1930	1930	1930	1930			
Packing Dimension	W	mm	1420+1420+1420	1420+1420+1420	1420+1420+1420	1420+1420+1420			
	D	mm	790	790	790	790			
Max.number of	connectable IDU		64	64	64	64			
Max. Fu	se Current	A	200	200	200	200			
Max. Run	ning Current	A	146.7	149.3	154.6	157.2			
Net	Weight	kg	1100	1101	1109	1110			
Gross	s Weight	kg	1188	1189	1190	1191			
Conne	ection Ratio			50% -	150%				
Compres	sor Quantity	PC	6	6	6	6			
Condense	r Fan Quantity	PC	6	6	6	6			
Height Difference Between	ODUs is Higher Than IDUs	m		50 (\$	90* ⁴)				
ODUs and IDUs	ODUs is Lower Than IDUs	m		40 (9	90* ⁴)				
Height Differen	ce Between IDUs	m			80				
Operation Range	Cooling	DB		-5°C~	52°C*5				
operation range	Heating	WB		-25°C*5-	- 16.5°C				
Max. Total Piping Length m			1000						

Notes:

Rated cooling capacity and rated heating capacity are tested in the following conditions:

 Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
 The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
 The final appearance of outdoor units is subject to the actual products.
 For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
 When the operation temperature is under 48°C~52°C or -25°C~-20°C, please contact our professional engineer.

	HP		82HP	84HP	86HP	88HP						
M	lodel		AVWT-794HKSS	AVWT-816HKSS	AVWT-824HKSS	AVWT-844HKSS						
Com	bination		AVWT-272HKSS AVWT-272HKSS AVWT-250HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-272HKSS	AVWT-232HKSS AVWT-212HKSS AVWT-190HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-190HKSS AVWT-190HKSS						
Powe	er Supply			380-415V 3N	~ 50Hz / 60Hz							
	Rated Capacity	kW	232.5	240.0	241.5	248.0						
Cooling Operation*1	Power Consumption	kW	79.76	82.77	79.12	81.44						
	EER	W/W	2.91	2.90	3.05	3.05						
	Rated Capacity	kW	260.0	270.0	270.0	276.0						
Heating Operation*1	Power Consumption	kW	87.49	91.23	86.81	88.92						
	COP	W/W	2.97	2.96	3.11	3.10						
Air Fl	ow Rate	m³/min	1050	1126	1126							
Noise	e level*2	dB(A)	72	72 72 72 72								
Cabine	et Color* ³			Grayis	h White							
Compre	essor Type			Enhanced Vapor In	jection Compressor							
Refrige	erant Type			R4	10A							
Ga	s Line	mm	Φ50.8	Φ50.8	Φ50.8	Φ50.8						
Liqu	iid Line	mm	Φ25.4	Ф25.4	Φ25.4	Φ25.4						
	H	mm	1730	1730	1730	1730						
Out Dimension	W	mm	1600+1600+1600	1600+1600+1600	1350+1350+1350+1350	1350+1350+1350+1350						
	D	mm	750	750	750	750						
	Н	mm	1930	1930	1930	1930						
Packing Dimension	W	mm	1665+1665+1665	1665+1665+1665	1420+1420+1420+1420	1420+1420+1420+1420						
-	D	mm	790	790	790	790						
Max.number of	f connectable IDU		64	64	64	64						
Max. Fu	ise Current	A	250	250	250	250						
Max. Run	ning Current	A	173.3	174.6	191.2	193.8						
Net	Weight	kg	1244	1245	1461	1462						
Gross	s Weight	kg	1340	1341	1583	1584						
Conne	ection Ratio			50% -	150%							
Compres	ssor Quantity	PC	6	6	8	8						
Condense	er Fan Quantity	PC	6	6	8	8						
Height Difference Betweer	ODUs is Higher Than IDUs	m		50 (90*4)							
ODUs and IDUs	ODUs is Lower Than IDUs	m	40 (90*4)									
Height Differen	ice Between IDUs	m	30									
Onemation Device	Cooling	DB		-5°C~	52°C*5							
Operation Range	Operation Range Heating W			-25°C*5	~ 16.5°C							
Max. Total	Piping Length	m		10	000							

H	IP		90HP	92HP	94HP	96HP								
M	odel		AVWT-866HKSS	AVWT-886HKSS	AVWT-908HKSS	AVWT-928HKSS								
Comb	pination		AVWT-232HKSS AVWT-232HKSS AVWT-212HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS AVWT-190HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS AVWT-212HKSS	AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS								
Powe	r Supply			380-415V 3N-	~ 50Hz / 60Hz									
	Rated Capacity	kW	253.5	260.0	265.5	272.0								
Cooling Operation*1	Power Consumption	kW	84.04	86.36	88.96	91.28								
	EER	W/W	3.02	3.01	2.98	2.98								
	Rated Capacity	kW	282.0	288.0	294.0	300.0								
Heating Operation*1	Power Consumption	kW	91.53	93.64	96.25	98.36								
	COP	W/W	3.08	3.08	3.05	3.05								
Air Flo	ow Rate	m³/min	1155	1155	1184									
Noise	e level*2	dB(A)	72	72 72 72 72 72										
Cabine	t Color* ³		Grayish White											
Compre	ssor Type			Enhanced Vapor Injection Compressor										
Refrige	rant Type			R41	10A									
Gas	s Line	mm	Φ50.8	Φ50.8	Φ50.8	Φ50.8								
Liqui	id Line	mm	Φ25.4	Φ25.4	Φ25.4	Φ25.4								
	Н	mm	1730	1730	1730	1730								
Out Dimension	W	mm	1350+1350+1350+1350	1350+1350+1350+1350	1350+1350+1350+1350	1350+1350+1350+1350								
	D	mm	750	750	750	750								
	Н	mm	1930	1930	1930	1930								
Packing Dimension	W	mm	1420+1420+1420+1420	1420+1420+1420+1420	1420+1420+1420+1420	1420+1420+1420+1420								
	D	mm	790	790	790	790								
Max.number of	connectable IDU		64	64	64	64								
Max. Fu	se Current	A	250	250	250	320								
Max. Runi	ning Current	A	199.1	201.7	207	209.6								
Net \	Neight	kg	1470	1471	1479	1480								
Gross	Weight	kg	1585	1586	1587	1588								
Conne	ction Ratio			50% -	150%									
Compres	sor Quantity	PC	8	8	8	8								
Condense	r Fan Quantity	PC	8	8	8	8								
Height Difference Between	ODUs is Higher Than IDUs	m		50 (9	90*4)									
ODUs and IDUs	ODUs is Lower Than IDUs	m	40 (90*4)											
Height Differen	ce Between IDUs	m	30											
Operation Panco	Cooling	DB	-5 °C ~ 52 °C *5											
Operation Range	Heating	WB		-25°C*5~	- 16.5°C									
Max. Total I	Piping Length	m	1000											

Notes:

Rated cooling capacity and rated heating capacity are tested in the following conditions: Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
 The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
 The final appearance of outdoor units is subject to the actual products.

For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
 When the operation temperature is under 48°C-52°C or -25°C--20°C, please contact our professional engineer.

\mathbf{Z}	Hisense S	\mathbf{Z}	Hisense NPRLEN	Z	Hisense S	\mathbf{T}	Hisense No FLEXT
\mathbf{Z}		$\overline{\Delta}$		\mathbf{Z}		\mathbf{Z}	
$\overline{\Delta}$		$\overline{\Delta}$		Z		$\overline{\Delta}$	

	HP		08HD	100HP	102HP	10/HP							
IVI	odel		AVWI-946HKSS	AVW1-968HKSS	AVW1-988HKSS	AVW1-1008HKSS							
Coml	bination		AVWT-250HKSS AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-232HKSS AVWT-232HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-232HKSS AVWT-212HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-232HKSS AVWT-232HKSS							
Powe	er Supply			380-415V 3N	~ 50Hz / 60Hz	1							
	Rated Capacity	kW	276.5	284.0	289.5	296.0							
Cooling Operation*1	Power Consumption	kW	93.04	96.05	98.50	100.82							
	EER	W/W	2.97	2.96	2.94	2.94							
	Rated Capacity	kW	305.0	315.0	324.0	330.0							
Heating Operation*1	Power Consumption	kW	100.44	104.18	107.89	110.00							
	COP	W/W	3.04	3.02	3.00	3.00							
Air Fl	ow Rate	m³/min	1238	1238	1292	1292							
Noise	e level* ²	dB(A)	72	72 72 72 73									
Cabine	et Color* ³		Grayish White										
Compre	essor Type			Enhanced Vapor In	jection Compressor								
Refrige	erant Type			R4	10A								
Ga	s Line	mm	Φ50.8	Φ50.8	Φ50.8	Φ50.8							
Liqu	iid Line	mm	Φ25.4	Φ25.4	Φ25.4	Φ25.4							
	H	mm	1730	1730	1730	1730							
Out Dimension	W	mm	1350+1350+1350+1600	1350+1350+1350+1600	1350+1350+1600+1600	1350+1350+1600+1600							
	D	mm	750	750	750	750							
	Н	mm	1930	1930	1930	1930							
Packing Dimension	W	mm	1420+1420+1420+1665	1420+1420+1420+1665	1420+1420+1665+1665	1420+1420+1665+1665							
	D	mm	790	790	790	790							
Max.number of	f connectable IDU		64	64	64	64							
Max. Fu	ise Current	A	320	320	320	320							
Max. Run	ning Current	A	214.1	215.4	218.6	221.2							
Net	Weight	kg	1524	1525	1569	1570							
Gross	s Weight	kg	1637	1638	1687	1688							
Conne	ection Ratio			50% -	150%								
Compres	ssor Quantity	PC	8	8	8	8							
Condense	r Fan Quantity	PC	8	8	8	8							
Height Difference Between	ODUs is Higher Than IDUs	m	50 (90*4)										
ODUs and IDUs	ODUs is Lower Than IDUs	m	40 (90*4)										
Height Differen	ce Between IDUs	m		3	0								
Operation Range	Cooling	DB		-5°C~	52°C*5								
	Heating	WB		-25°C*5-	- 16.5℃								
Max. Total	Piping Length	m		10	00								

Н	IP		106HP	108HP	110HP	112HP								
Mo	del		AVWT-1026HKSS	AVWT-1048HKSS	AVWT-1066HKSS	AVWT-1088HKSS								
Comb	ination		AVWT-272HKSS AVWT-272HKSS AVWT-250HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-272HKSS AVWT-232HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-272HKSS AVWT-250HKSS	AVWT-272HKSS AVWT-272HKSS AVWT-272HKSS AVWT-272HKSS								
Power	Supply			380-415V 3N-	~ 50Hz / 60Hz									
	Rated Capacity	kW	300.5	308.0	312.5	320.0								
Cooling Operation*1	Power Consumption	kW	102.58	105.59	107.35	110.36								
-	EER	W/W	2.93	2.92	2.91	2.90								
	Rated Capacity	kW	335.0	345.0	350.0	360.0								
Heating Operation*1	Power Consumption	kW	112.08	115.82	117.9	121.64								
0 1	COP	W/W	2.99	2.98	2.97	2.96								
Air Flo	w Rate	m³/min	1346	1400	1400									
Noise	level*2	dB(A)	73	73 73 73 73 7										
Cabinet	t Color* ³	- ()	Grayish White											
Compres	ssor Type			Enhanced Vapor Injection Compressor										
Refriger	ant Type			R41	10A									
Gas	Line	mm	Φ50.8	Φ50.8	Φ50.8	Φ50.8								
Liquid	d Line	mm	Φ25.4	Φ25.4	Φ25.4	Φ25.4								
	Н	mm	1730	1730	1730	1730								
Out Dimension	W	mm	1350+1600+1600+1600	1350+1600+1600+1600	1600+1600+1600+1600	1600+1600+1600+1600								
-	D	mm	750	750	750	750								
	Н	mm	1930	1930	1930	1930								
Packing Dimension	W	mm	1420+1665+1665+1665	1420+1665+1665+1665	1665+1665+1665+1665	1665+1665+1665+1665								
3	D	mm	790	790	790	790								
Max.number of	connectable IDU		64	64	64	64								
Max. Fus	e Current	Α	320	320	320	320								
Max. Runn	ing Current	Α	225.7	227	231.5	232.8								
Net V	Veight	kg	1614	1615	1659	1660								
Gross	Weight	kg	1737	1738	1787	1788								
Connec	ction Ratio			50% -	150%									
Compress	sor Quantity	PC	8	8	8	8								
Condenser	Fan Quantity	PC	8	8	8	8								
Height Difference Between	ODUs is Higher Than IDUs	m		50 (9	90* ⁴)									
ODUs and IDUs	ODUs is Lower Than IDUs	m	40 (90*4)											
Height Difference	e Between IDUs	m	30											
Operation Dance	Cooling	DB	-5 °C ~ 52 °C *5											
Operation Range	Heating	WB	-25 °C *5~ 16.5 °C											
Max. Total F	Piping Length	m	m 1000											

Notes:

Rated cooling capacity and rated heating capacity are tested in the following conditions:

 Cooling conditions: indoor air inlet temperature: 27°C DB 19°C WB, Outdoor air inlet temperature: 35°C DB, pipe length: 7.5m, pipe height difference: 0m Heating conditions: indoor air inlet temperature: 20°C DB, Outdoor air inlet temperature: 7°C DB 6°C WB, pipe length: 7.5m, pipe height difference: 0m
 The above noise values are measured in the anechoic chamber without reflected echo, therefore the impact of the reflected echo must be included at the scene.
 The final appearance of outdoor units is subject to the actual products.
 For height difference between ODU&IDU more than 50(40)m, please contact our professional engineer.
 When the operation temperature is under 48°C~52°C or -25°C~-20°C, please contact our professional engineer.

Hisense S	Z	Historice 5	Z	Hisense Write	Z	
	Z		Z		Z	
	H		H		H	-

Hisense Hi-FLEXi S series provide a wide selection of indoor units for indoor decoration and create a personalized living space.

1-Way Cassette Type

Fashionable Appearance, Convenient Installation

Customers can choose the installation method according to different situation. The concise fashion elements style is suitable for renewal projects and un-decorated shopping malls or classrooms.

Efficiency DC Motor, Adjustable Air Speed

Adoption of the efficient DC motor and the optimized duct design assure the smooth air flow.

Wider 3D-air Flow Range

Broad air deflector design realized broad air supply range. The wind direction can be adjusted according to the need thus makes the customers feel more comfortable.

Standard Equipped Drain Pump

Standard equipped drain pump with the maximum drainage height up to 1200mm.

Indoo	r unit				1-Way Cas	sette Type						
Model Power Supply	AC14 /50Hz	220V~240V 2/60Hz	AVY-07UXJSJA	AVY-09UXJSJA	AVY-12UXJSJA	AVY-14UXJSJA	AVY-18UXJSKA	AVY-24UXJSKA				
		kW	2.2	2.8	3.6	4.0	5.6	7.1				
Cooling Operation		kcal/h	1,900	2,400	3,100	3,400	4,800	6,100				
		Btu/h	7,500	9,600	12,300	13,600	19,100	24,200				
		kW	2.5	3.2	4.0	4.5	6.3	8				
Heating Opeartion		kcal/h	2,100	2,700	3,400	3,800	5,400	6,800				
		Btu/h	85,00	10,900	13,600	15,400	21,500	27,300				
Sound Pressure Level		dB(A)	33/32/31/30/29/28	35/34/32/31/29/28	40/36/35/33/30/29	40/36/35/33/30/29	41/39/36/35/33/31	48/46/43/40/37/33				
Outer Dimensions (H×W×D)		mm	192×910×470 192×1,180×470									
Net Weight		kg	19	19	20	20	24	24				
Refrigerant				R410A (Nitrogen-charged for corrosion-resistance)								
Indoor Fan Air Flow Ra	ate	m³/h	372/354/336/306/288/276	396/372/336/306/288/276	498/438/408/372/336/306	498/438/408/372/336/306	726/594/528/492/468/396	936/756/672/594/504/426				
Motor Power		kW	0.04	0.04	0.04	0.04	0.06	0.06				
Refrigerant Piping Conne	ection				Flare-nut Connecti	on (with Flare Nuts)					
Liquid Line		mm	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф9.53				
Gas Line		mm	Φ12.7	Ф12.7	Ф12.7	Ф12.7	Ф15.88	Ф15.88				
Condensate Drain					VP25 (Outer I	Diameter 32)						
Panel Model	Panel Model		HP-D-NA	HP-D-NA	HP-D-NA	HP-D-NA	HP-E-NA	HP-E-NA				
Cabinet Color					Neutral	White						
Outer Dimensions (H×W×D)		mm	55×1,100×550	55×1,100×550	55×1,100×550	55×1,100×550	55×1,370×550	55×1,370×550				
Net Weight		kg	5	5	5	5	6	6				

NOTES: 1. The nominal cooling capacity is based on the following conditions:

2. The sound pressure level is based on the following conditions: 1.0m beneath the unit,1.0m from Discharge Grille. The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field. When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure.

Intelligent Sensor (Optional)

People detecting, moving or not moving. Air blow to the people or avoid people.

Fresh Air Introducing

The unit can introduce fresh air from the external environment. With the filter facility, the air quality is garunteed.

Indoor Air Inlet Temperature: 27°C DB (80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

The unit can introduce fresh air from the external environ-ment. With the filter facility, the air quality is ensured.

Super Compact Structure Design, Easy for Installation

Standard Equipped Drain Pump

The maximum drainage height up to 1200mm.

Indoc	or unit						2-Way	Cassette T	уре				
Model Power Supply	AC14 /50Hz	© 220V~240V z/60Hz	AVL-07 UXJSGA	AVL-09 UXJSGA	AVL-12 UXJSGA	AVL-14 UXJSGA	AVL-18 UXJSGA	AVL-24 UXJSGA	AVL-27 UXJSGA	AVL-30 UXJSGA	AVL-38 UXJSHA	AVL-48 UXJSHA	AVL-54 UXJSHA
		kW	2.2	2.8	3.6	4.3	5.6	7.1	8.4	9.0	11.2	14.0	16.0
Cooling Operation		kcal/h	1,900	2,400	3,100	3,700	4,800	6,100	6,900	7,700	9,600	12,000	13,800
		Btu/h	7,500	9,600	12,300	14,700	19,100	24,200	28,700	30,700	38,200	47,800	54,600
		kW	2.8	3.3	4.0	4.9	6.5	8.0	9.0	10.0	13.0	16.0	18.0
Heating Opeartion		kcal/h	2,400	2,800	3,400	4,200	5,600	6,800	7,800	8,600	11,200	13,800	15,500
		Btu/h	9,600	11,300	13,600	16,700	22,200	27,300	30,700	34,100	44,400	54,600	61,400
Sound Pressure Leve	I	dB(A)	32/30/29/27 33/30/29/28 34/31/30/28 40/37/34/32 42/39/36/33 45/42/40/36 47/44/40/36 49/46/42/37								46/44/40/38	48/45/42/38	49/46/43/40
Outer Dimensions (H×W×D)	mm				298	×860×630				298	×1,420×63	30	
Net Weight		kg	22	22	22	24	24	24	24	24	39	39	39
Refrigerant			R410A(Nitrogen-charged for corrosion-resistance)										
Indoor Fan Air Flow Ra	ite	m³/h	600/510 /432/360	660/564 /492/396	720/630 /534/450	900/792 /690/594	1,020/894 /780/672	1,140/984 /858/738	1,260/1,104 /936/756	1,320/1,158 /978/786	1,800/1,584 /1,386/1,188	2,100/1,848 /1,614/1,266	2,220/1,950 /1,704/1,446
Motor Power		kW	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057x2	0.057x2	0.057x2
Refrigerant Piping Conne	ction						Flare-nut	Connection	(with Flare	Nuts)			
Liquid Line		mm	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53
Gas Line		mm	Φ12.7	Φ12.7	Ф12.7	Φ12.7	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Φ15.88
Condensate Drain					-		VP2	5(Outer Dia	ameter Φ32	2)			
Panel Model			HP-C-NA	HP-C-NA	HP-C-NA	HP-C-NA	HP-C-NA	HP-C-NA	HP-C-NA	HP-C-NA	HP-F-NA	HP-F-NA	HP-F-NA
Cabinet Color								Neutral	White				
Outer Dimensions (H×W×D)		mm	30×1,100×710	30×1,100×710	30×1,100×710	30×1,100×710	30×1,100×710	30×1,100×710	30×1,100×710	30×1,100×710	30×1,660×710	30×1,660×710	30×1,660×710
Net Weight	kg	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	10.5	10.5	10.5	

NOTES: 1. The nominal cooling capacity is based on the following conditions: Indoor Air Inlet Temperature: 27°C DB (80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter. 2. The sound pressure level is based on the following conditions: 1.5m beneath the unit.

The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

										-				
Bi lazm in	road	Range of Li	of Air Su	pply-sui	table to	be Used	t			Y				
	RUU		gri Celli	ngs and	Large	spaces	\neg							
	Hei	ght of Air Sup	ppiy	Angl	e of Air Supp	bly								
			4.2m*			20° ~ 70°								
w	/hen ind	oor unit mode	el is AVC 27	~54* when	indoor unit m	odel is AVC ()9*~24*,the V	/alue is 3.5m						
			- !						du Lloigh	t Easily	A divetabl	a in tha (Cornor D	aakata
	ompa ne heig o it can	ht of the un be installed	nin iit is only 24 d in a small	8mm (Les space insid	s than 24.2 de a ceiling	KBtu/h),		A p	ocket is produced by height ca	ovided for e	ach of the ted easily v	four panel vithout rem	corners, so oving the p	that the anel.
Final Stress Str	nstalla or Cor ne desi racket r ossible, pe .	tion Direct venient F gn of the sc makes the u therefore t	ction Car Pipe Con quared unit unit body in: here can be	a be Chain nection body and s stalled in an e a conven	nged Eas equared ins ny direction ient position	tallation horizontall n to connec	y tt	PC DO Witi sur cor Dr	wer Inpu C Fan Mo th several n face-mount face-mount re system, t ain Pump	t Reduce tor wew technol ted rotor, th he motor e to as a Sta	ed by App ogies such le centraliz fficiency is andard P	as the ferr ed winding improved ir art	e New De itic magneti system and all aspect:	veloped ic d split s.
Indoo	r unit							4-Way	Cassette T	уре				
Model Power	220-	АС1Ф, -240V/50Hz	AVC-09 UXCSEB	AVC-12 UXCSEB	AVC-14 UXCSEB	AVC-17 UXCSEB	AVC-18 UXCSEB	AVC-22 UXCSEB	AVC-24 UXCSEB	AVC-27 UXCSFB	AVC-30 UXCSFB	AVC-38 UXCSFB	AVC-48 UXCSFB	AVC-54 UXCSFB
Supply	2	АС1Ф, 20V/60Hz	AVC-09 UX2SEB	AVC-12 UX2SEB	AVC-14 UX2SEB	AVC-17 UX2SEB	AVC-18 UX2SEB	AVC-22 UX2SEB	AVC-24 UX2SEB	AVC-27 UX2SFB	AVC-30 UX2SFB	AVC-38 UX2SFB	AVC-48 UX2SFB	AVC-54 UX2SFB
Naminal Caslina		kW	2.8	3.6	4.3	5.0	5.6	6.3	7.1	8.4	9.0	11.2	14.2	16.0
Capacity		kcal/h	2,400	3,100	3,700	4,300	4,800	5,400	6,100	7,200	7,700	9,600	12,200	13,800
		Btu/h	9,600	12,300	14,700	17,100	19,100	21,500	24,200	28,700	30,700	38,200	48,500	54,600
Nominal Heating		kW	3.3	4.2	4.9	5.6	6.5	7.5	8.5	9.6	10.0	13.0	16.3	18.0
Capacity		kcal/h	2,800	3,600	4,200	4,800	5,600	6,500	7,300	8,300	8,600	11,200	14,000	15,500
Noise Level		dB(A)	30-20-27	14,300	16,700	19,100	32_30_27	25,600	29,000	32,800	34,100	44,400	55,600	61,400
(n/M/L)	н	mm	248	248	248	248	248	248	248	298	298	298	298	298
Outer Dimensions	w	mm	840	840	840	840	840	840	840	840	840	840	840	840
	D	mm	840	840	840	840	840	840	840	840	840	840	840	840
Net Weight		kg	22	22	22	23	23	23	23	24	24	27	27	27
Air Flow Rate (H/M/L)		m³/h	780/720/660	900/810/720	900/810/720	960/840/720	960/840/720	1,140/1,020/840	1,200/1,020/900	1,560/1,380/1,200	1,560/1,380/1,200	1,920/1,680/1,440	2,040/1,740/1,500	2,220/1,920/1,620
Motor Power		W	40	50	50	50	50	60	60	90	90	120	150	160
Piping Connections							VP25	(OuterDiamet	erФ32)					
Liquid Line		mm	Φ6.35	Φ6.35	Φ6.35	Φ6.35	Φ6.35	Φ9.53	Φ9.53	Φ9.53	Φ9.53	Φ9.53	Φ9.53	Φ9.53
Condensate Drain		mm	Φ12.7	Φ12.7	Φ12.7	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88
Approximate Packi	ng	m ³	0.00	0.00	0.00	0.00	Plare-nut	Connection(w	o co	0.00	0.00	0.00	0.00	0.00
Measurement Standard Accessor	ies		0.22	0.22	0.22	0.22	0.22	U.22	ckets	0.20	0.20	0.20	0.20	0.20
Panel Model								HPE-A-NA	oneto					
Cabinet Color								Neutral Whit	e					
	н	mm	37	37	37	37	37	37	37	37	37	37	37	37
Outer Dimensions	W	mm	950	950	950	950	950	950	950	950	950	950	950	950
	D	mm	950	950	950	950	950	950	950	950	950	950	950	950
Net Weight		kg	6	6	6	6	6	6	6	6	6	6	6	6
Packing Volume		m ³	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08

NOTES: 1.The nominal cooling capacity and heating capacity are based on the following conditions: 2.The sound pressure level is based on the following conditions: 1.5m beneath the unit. Cooling Operation Conditions Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°CWB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

4-Way Cassette Type

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Indoor	unit									
Model Power	220~	AC1Φ, -240V/50Hz	AVC-05URCSAB	AVC-07URCSAB	AVC-09URCSAB	AVC-12URCSAB	AVC-14URCSAB	AVC-17URCSAB		
Supply	22	AC1Φ, 20V/60Hz		AVC-07UR2SAB	AVC-09UR2SAB	AVC-12UR2SAB	AVC-14UR2SAB	AVC-17UR2SAB		
Nominal Cooling	, [kW	1.7	2.2	2.8	3.6	4.3	5.0		
Capacity	, [kcal/h	1,500	1,900	2,400	3,100	3,700	4,300		
		Btu/h	5,800	7,500	9,600	12,300	14,700	17,100		
Nominal Heating	, [kW	1.9	2.8	3.3	4.2	4.9	5.6		
Capacity	"[kcal/h	1,700	2,400	2,800	3,600	4,200	4,800		
		Btu/h	6,500	9,600	11,300	14,300	16,700	19,100		
Noise Level (H/M/L)		dB(A)	39-34-30	39-34-30	39-34-30	39-34-30	41-38-33	44-41-37		
Outer	н	mm	270	270	270	270	270			
Dimensions	W	mm	570	570	570	570	570			
D mm		570	570	570	570	570	570			
Net Weight		kg	20	20	20	20	20	20		
Air Flow Rate (H/M/L)		m³/h	570/480/384	570/480/384	570/480/384	570/480/384	654/564/456	792/690/588		
Motor Power		W	63	63	63	63	71	89		
Piping Connecti	ons									
Liquid Line		mm	Ф6.35	Ф6.35	Φ6.35	Ф6.35	Φ6.35	Φ6.35		
Gas Line		mm	Φ12.7	Φ12.7	Φ12.7	Ф12.7				
Condensate Dra	in				VP25(Outer Diame	ter Ф32)				
Approximate Pa Measurement	cking	m ³	0.18	0.18	0.18	0.18	0.18	0.18		
Standard Acces	sories	6			Suspension Dracket	S				
Panel Model					HPE-CR-NA					
Cabinet Color					Neutral White					
	н	mm	30	30						
Outer Dimensions	W	mm	650	650	650	650	650	650		
	D	mm	650	650	650	650	650	650		
Net Weight		kg	2.4	2.4	2.4	2.4 2.4		2.4		
Packing Volume		m ³	0.07	0.07	0.07	0.07	0.07	0.07		

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: 2. The sound pressure level is based on the following conditions: **Cooling Operation Conditions** Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB)

1.5m beneath the unit.

The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

Installation Space-saving The height less than 270mm can be easily fit into the limited space in the false ceiling (7.5-24.2KBtu/h). 7.5-24.2KBtu/h False Ceilin Satisfying Varied Requests on Installation Indoor Uni Air Supply (Duct Air Do NOTE: When bottom air inlet is adopted, sound pressure will increase according to factors such as installation mode and the room structure. Indoor unit Ceiling Du AVD-07 AVD-09 AVD-12 AVD-14 AVD-17 AVD-18 UXCSAH UXCSAH UXCSAH UXCSAH UXCSBH UXCSBH AC1Φ, 220 ~240V/50Hz Model Power Supply AVD-07 AVD-09 AVD-12 AVD-14 AVD-17 AC1Φ, 220V/60Hz AVD-18 UX2SAH UX2SAH UX2SAH UX2SAH UX2SBH UX2SBH kW 2.2 2.8 3.6 4.3 5.0 5.6 Nominal Cooling 1.900 2,400 3,100 3,700 4,300 4,800 kcal/h Capacity 9,600 14,700 17,100 19,100 7.500 12,300 Btu/h 4.2 4.9 5.6 6.5 kW 2.8 3.3 Nominal Heating 3,600 4,200 4,800 5,600 2,400 2.800 kcal/h Capacity 9.600 11.300 14,300 16,700 19,100 22,200 Btu/h Noise Level (H/M/L) 33-31-29 33-31-29 33-31-29 33-31-29 34-32-30 34-32-30 dB(A) 270 270 270 270 270 н 270 mm Outer W 650+75 650+75 650+75 650+75 900+75 900+75 mm Dimensions 720 720 720 720 720 D 720 mm Net Weight kg 25 25 25 25 34 34 Air Flow Rate 480/420 900/780 900/780 480/420 780/660 780/660 m³/h (H/M/L) /360 /360 /540 /540 /660 Motor Power w 110 110 150 150 150

/660 150 Piping Connections Flare-nut Cor Liquid Line mm Φ6.35 Φ6.35 Φ6.35 Φ6.35 Ф6.35 Φ6.35 Gas Line mm Φ12.7 Φ12.7 Φ12.7 Φ12.7 Φ15.88 Φ15.88 VP25 Condensate Drain External Static 50(80) 50(80) 50(80) 50(80) 50(80) 50(80) Ра Pressure

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions

0.21

m³

Packing Volume

Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

0.21

0.21

0.21

0.27

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Piping Length: 7.5 Meters Piping Lift: 0 Meter

Fresh Indoor Air

By introducing fresh outdoor air and being equipped with the air filter to keep indoor air clean.

Excellent Air Flow

The cooling and heating air distributed from the unit to the indoor space through ducts, which creates a comfortable environment.

Optional Parts

The drain pump can be supplied as optional part.

1	ed type (High Sta	tic Press	ure)					
	AVD-22 UXCSBH	AVD-24 UXCSBH	AVD-27 UXCSCH	AVD-30 UXCSCH	AVD-38 UXCSCH	AVD-48 UXCSDH	AVD-54 UXCSDH	AVD-76 UX6SEH*1	AVD-96 UX6SFH*1
	AVD-22 UX2SBH	AVD-24 UX2SBH	AVD-27 UX2SCH	AVD-30 UX2SCH	AVD-38 UX2SCH	AVD-48 UX2SDH	AVD-54 UX2SDH	AVD-76 UX2SFH*2	AVD-96 UX2SFH*2
	6.3	7.1	8.4	9.0	11.2	14.2	16.0	22.4	28.0
	5,400	6,100	7,200	7,700	9,600	12,200	13,800	19,300	24,100
	21,500	24,200	28,700	30,700	38,200	48,500	54,600	76,500	95,600
	7.5	8.5	9.6	10.0	13.0	16.3	18.0	25.0	31.5
	6,500	7,300	8,300	8,600	11,200	14,000	15,500	21,500	27,100
	25,600	29,000	32,800	34,100	44,400	55,600	61,400	85,300	107,500
	36-34-32	36-34-32	41-39-34	41-39-34	43-40-36	44-41-36	43-40-37	52	54
	270	270	350	350	350	350	350	470	470
	900+75	900+75	900+75	900+75	900+75	1300+75	1300+75	1060	1250
	720	720	800	800	800	800	800	1120	1120
	34	34	44	44	44	56	56	94	106
	960/840 /720	960/840 /720	1600/1400 /1150	1600/1400 /1150	1600/1400 /1150	2100/1750 /1450	2150/1800 /1550	3480	4650
	150	190	300	300	300	430	430	1030	1280
1	nection(wi	th Flare N	uts)					Bra	zing
	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53
	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф15.88	Ф19.05	Ф22.2
(Duter Dian	neter Φ32)						
	50(80)	50(80)	120(90)	120(90)	120(90)	120(90)	120(90)	220	220
	0.27 0.27 0.		0.38	0.38	0.38	0.52	0.52	0.90	1.06

0.27

2. The sound pressure level is based on the following conditions: 1.5m beneath the unit. With discharge duct (2.0m) and return duct(1.0m) The above data was measured in an anechoic chamber so that the reflected sound

should be taken into consideration in the field.

3. When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure. *1: AC3Ф, 380V/60Hz: AVD- 76UX7SEH; AVD-96UX7SFH

Indoor	unit		Ceiling Ducted type (Low Static Pressure)														
Model Power	AC1 ~240	Ф, 220 V/50Hz	AVD-07 UXCSAL	AVD-09 UXCSAL	AVD-12 UXCSAL	AVD-14 UXCSAL	AVD-17 UXCSBL	AVD-18 UXCSBL	AVD-22 UXCSBL	AVD-24 UXCSBL	AVD-27 UXCSCL	AVD-30 UXCSCL	AVD-38 UXCSCL	AVD-48 UXCSDL	AVD-54 UXCSDL	AVD-76 UX6SEL*1	AVD-96 UX6SFL*1
Supply	220\	//60Hz	UX2SAL	UX2SAL	UX2SAL	UX2SAL	UX2SBL	UX2SBL	UX2SBL	UX2SBL	UX2SCL	UX2SCL	UX2SCL	UX2SDL	UX2SDL	UX7SEL*2	UX7SFL*2
		kW	2.2	2.8	3.6	4.3	5.0	5.6	6.3	7.1	8.4	9.0	11.2	14.2	16.0	22.4	28.0
Nominal Cooling Capacity		kcal/h	1,900	2,400	3,100	3,700	4,300	4,800	5,400	6,100	7,200	7,700	9,600	12,200	13,800	19,300	24,100
		Btu/h	7,500	9,600	12,300	14,700	17,100	19,100	21,500	24,200	28,700	30,700	38,200	48,500	54,600	76,500	95,600
		kW	2.8	3.3	4.2	4.9	5.6	6.5	7.5	8.5	9.6	10.0	13.0	16.3	18.0	25.0	31.5
Nominal Heating Capacity		kcal/h	2,400	2,800	3,600	4,200	4,800	5,600	6,500	7,300	8,300	8,600	11,200	14,000	15,500	21,500	27,100
		Btu/h	9,600	11,300	14,300	16,700	19,100	22,200	25,600	29,000	32,800	34,100	44,400	55,600	61,400	85,300	107,500
Noise Level (H/M/L)		dB(A)	30-26-24	30-26-24	32-30-28	32-30-28	33-31-29	33-31-29	34-32-30	34-32-30	38-34-30	38-34-30	39-35-31	41-38-33	43-39-34	50	52
	н	mm	270	270	270	270	270	270	270	270	350	350	350	350	350	470	470
Outer Dimensions	W	mm	650+75	650+75	650+75	650+75	900+75	900+75	900+75	900+75	900+75	900+75	900+75	1300+75	1300+75	1060	1250
	D	mm	720	720	720	720	720	720	720	720	800	800	800	800	800	1120	1120
Net Weight		kg	25	25	25	25	34	34	34	34	44	44	44	56	56	94	106
Air Flow Rate (H/M/L)		m³/h	480/420 /360	480/420 /360	780/660 /540	780/660 /540	900/780 /660	900/780 /660	960/840 /720	960/840 /720	1550/1350 /1150	1550/1350 /1150	1550/1350 /1150	2150/1800 /1500	2200/1900 /1500	3480	4320
Motor Power		W	110	110	150	150	150	150	150	190	300	300	300	430	430	950	1120
Piping Connections	6						Flar	e-nut Con	nection(wi	th Flare N	uts)					Bra	zing
Liquid Line		mm	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Ф9.53	Φ9.53
Gas Line		mm	Ф12.7	Ф12.7	Ф12.7	Ф12.7	Ф15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ15.88	Φ19.05	Φ22.2
Condensate Drai	n							VP25(Outer Diar	neter Φ32)						
External Static Pressure		Ра	30	30	30	30	30	30	30	30	60	60	60	60	60	100	100
Packing Volume		m³	0.21	0.21	0.21	0.21	0.27	0.27	0.27	0.27	0.38	0.38	0.38	0.52	0.52	0.90	1.06

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB)

Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB) 2. The sound pressure level is based on the following conditions: 1.5m beneath the unit. With discharge duct (2.0m) and return duct(1.0m)

The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

3. When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure. *1: AC3Φ, 380V/60Hz: AVD- 76UX7SEH; AVD-96UX7SFH

AC10, 220 ~240V/50Hz AVE-05UXCSAL AVE-07UXCSAL AVE-09UXCSAL AVE-12UX Model Power AC10, 20V/60H Supply AVE-07UX2SAL AVE-09UX2SAL AVE-12UX kW 1.7 22 2.8 3.6 Nominal Cooling kcal/h 1.500 1.900 2.400 3.100 Capacity Btu/h 5,800 12,300 7.500 9.600 kW 1.9 2.8 3.3 4.2 Nominal Heating kcal/h 1,700 2,400 2,800 3,600 Capacity Btu/h 6,500 11,300 9,600 14,300 Noise Leve (H/M/L) dB(A) 29-28-25 27-24-21 27-24-21 32-30-27 нΙ mm 192 192 192 192 Outer W mm 697 900+73 900+73 900+73 Dimensions D mm 447 447 447 447 Net Weight kg 16 20 20 21 Air Flow Rate (H/M/L) m³/h 372/354/300 500/440/350 500/440/350 640/590/5 Motor Power W 19 50 50 70 **Piping Connections** Flare-Liquid Line mm Φ6.35 Φ6.35 Φ6.35 Φ6.35 **Φ12**7 Gas Line mm Φ12.7 Φ12.7 Φ12.7 Condensate Drain External Static Pa 10(0-10-30) 10(30) 10(30) 10(30) Pressure m³ 0.15 0.15 Packing Volume 0.15 0.15

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB)

Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Excellent Air Flow

The cooling and heating air distributed from the unit to the indoor space through ducts which creates a comfortable environment.

Satisfy Varied Requests on Installation

Available air inlet as rear or bottom entry, consumers can choose relevant air inlet mode according to the practical installation space.

Drain Pump as a Standard Part

The drain-up length up to 900mm which enables the convenient drain piping and enlarges the flexibility of the installation.

d Typ	pe (Low-height)				
CSAL	AVE-14UXCSAL	AVE-17UXCSBL	AVE-18UXCSBL	AVE-22UXCSBL	AVE-24UXCSBL
2SAL	AVE-14UX2SAL	AVE-17UX2SBL	AVE-18UX2SBL	AVE-22UX2SBL	AVE-24UX2SBL
	4.3	5.0	5.6	6.3	7.1
	3,700	4,300	4,800	5,400	6,100
	14,700	17,100	19,100	21,500	24,200
	4.9	5.8	6.5	7.5	8.5
	4,200	5,000	5,600	6,500	7,300
	16,700	19,800	22,200	25,600	29,000
7	32-30-27	34-30-28	34-30-28	36-32-29	36-32-29
	192	192	192	192	192
	900+73	1,170+73	1,170+73	1,170+73	1,170+73
	447	447	447	447	447
	21	26	26	26	26
20	640/590/520	870/750/630	870/750/630	950/820/710	950/820/710
	70	100	100	110	110
nut Co	onnection(with Fla	re Nuts)			
	Ф6.35	Ф6.35	Φ6.35	Ф9.53	Ф9.53
	Φ12.7	Ф15.88	Ф15.88	Ф15.88	Ф15.88
/P25(Outer Diameter Φ	32)			
	10(30)	10(30)	10(30)	10(30)	10(30)
	0.15	0.18	0.18	0.18	0.18

2. The sound pressure level is based on the following conditions: 1.5m beneath the unit. The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure.

W mm 700+70 700+70 700+70 700+70 D mm 602 602 602 602 kg 21 21 21 21 m³/h 590/510/470 450/380/335 450/380/335 590/510/470 W 50 50 60 60 Flare-nut Connection(with Flare Nuts) mm Φ6.35 Φ6.35 Φ6.35 Φ6.35 Φ12.7 mm Φ12.7 Φ12.7 Φ12.7 VP25(Outer Diameter Ф32) Ра 10(30) 10(30) 10(30) 10(30) 0.15 m³ 0.15 0.15 0.15

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions

Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter Heating Operation Conditions

Net Weight

(H/M/L) Motor Power

Liquid Line

Gas Line

Air Flow Rate

Piping Connections

Condensate Drain

External Static Pressure

Packing Volume

Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

2. The sound pressure level is based on the following conditions: 1.5m beneath the unit. With discharge duct (2.0m) and return duct(1.0m) The above data was measured in an anechoic chamber so that the reflected sound

should be taken into consideration in the field.

When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure.

Ceiling Ducted Type (DC Low-height)

With the height of 192mm and the depth of 447mm it can make full use of the narrow space to realize various kinds of air flow.

DC Motor, Efficient and Energy-saving

1.Equipped with the efficient and energy-saving DC motor, 6 adjustable fan speeds offered. 2.Extremly low operating noise; the lowest noise level is only 26dB(A) (suitable for both heating, cooling and air flow)

Adjustable Indoor Unit Static Pressure

The Indoor unit can adjust the static pressure automatically according to the house structure and the installation condition, which ensures that the indoor unit operates in the optimum exhaust state.

Indoor unit				Ceiling Duc	ted Type (DC L	.ow-height)			
Model Power Supply	AC1Ф 220V~240V /50Hz/60Hz	AVE-07UXJSCL	AVE-09UXJSCL	AVE-12UXJSCL	AVE-14UXJSCL	AVE-17UXJSDL	AVE-18UXJSDL	AVE-22UXJSDL	AVE-24UXJSDL
	kW	2.2	2.8	3.6	4.3	5	5.6	6.3	7.1
Nominal Cooling Capacity	kcal/h	1,900	2,400	3,100	3,700	4,300	4,800	5,400	6,100
	Btu/h	7,500	9,600	12,300	14,700	17,100	19,100	21,500	24,200
	kW	2.8	3.3	4.2	4.9	5.6	6.5	7.5	8.5
Nominal Heating Capacity	kcal/h	2,400	2,800	3,600	4,200	4,800	5,600	6,500	7,300
	Btu/h	9,600	11,300	14,300	16,700	19,100	22,200	25,600	29,000
Sound Pressure Level	dB(A)	29/27/26 /24/23/22	29/27/26 31/30/29 /24/23/22 /27/25/24 33/32/30/29/26/25			36/34/33/32/30/27 37/36/34/32/31/29			
Outer Dimensions (H×W×D)	mm		192×91	0×447		192×1,180×447			
Net Weight	kg		20	2	1	26 26			6
Refrigerant				R410A(Nitrog	en-charged for co	orrosion-resistan	ce)		
Indoor Fan Air Flow Rate	m³/min	450/420/390 /360/330/312	540/492/444 /402/360/312	588/540/510/	480/450/420	870/810/750/690/630/600		990/900/840/780/720/660	
Motor Power	W		3:	3			Ę	57	
Refrigerant Piping Connection				Flare-n	ut Connection(wi	th Flare Nuts)			
Liquid Line	mm	Φ6.35				đ	6.35	Φ9	.53
Gas Line	mm	Ф12.7				Φ	15.88	Φ1	5.88
Condensate Drain		VP25(Outer Diameter Ф32)							
External Static Pressure	Pa		10(0-10)-30)			10(0-1	10-50)	
Packing Volume	m ³		0.1	5			0.	18	

NOTES: 1.The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions

Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Adjustable Humidity for Coziness

With the air inlet equipped with the humidity sensor, the humidity adjustment and control according to the indoor humidity condition can be realized.

Drain Pump as a Standard Part

The drain-up length up to 900mm which enables the convenient drain piping and enlarges the flexibility of the installation.

3D Air-flow Outlet

Fashionable Appearance. Smooth panel design Easy clean LED. Backlight show

Intelligent 3D air flow. 3 wind setting type (normal, 3D, super long distance). Temperature and humidity display. Wide louver working angle.

2. The sound pressure level is based on the following conditions: 1.5m beneath the unit. With discharge duct (2.0m) and return duct(1.0m)

The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

When bottom air inlet is adopted, the sound pressure will increase according to factors such as installation mode and the room structure.

Ceiling & Floor Type

Flexible Installation

The unit can be installed either stand on the floor or hang under the ceiling.

New Fashion Design Appearance and High Quality

The fashionable design and streamline appearance gives a perfect choice for users. The integrative side panel makes the whole unit more concordant.Huge air outlet with an integrative large louver realizes high air volume and low noise.

Intelligent 3D Air Flow

With horizontal and vertical air louver, the air flow can be adjusted freely. Fullfill the optimum air organization, and bring more comfortable.

Indoor ι	unit				Ceiling	& Floor Type			
Model Power	AC1Ф 220V~240V /50Hz	AVV-17URSCA	AVV-18URSCA	AVV-22URSCA	AVV-24URSCA	AVV-27URSCB	AVV-30URSCB	AVV-38URSCB	AVV-48URSCC
Supply	AC1Ф 220V/60Hz	AVV-17UR2SA	AVV-18UR2SA	AVV-22UR2SA	AVV-24UR2SA	AVV-27UR2SB	AVV-30UR2SB	AVV-38UR2SB	AVV-48UR2SC
Naminal Caslina	kW	5	5.6	6.3	7.1	8.4	9	11.2	14.2
Capacity	kcal/h	4,300	4,800	5,400	6,100	7,200	7,700	9,600	12,200
	Btu/h	17,100	19,100	21,500	24,200	28,700	30,700	38,200	48,500
	kW	5.6	6.5	7.5	8.5	9.6	10	13	16.3
Nominal Heating Capacity	kcal/h	4,800	5,600	6,500	7,300	8,300	8,600	11,200	14,000
	Btu/h	19,100	22,200	25,600	29,000	32,800	34,100	44,400	55,600
Motor Power	W	40	40	70	70	70	80	130	160
Air Flow Rate (H/M/L)	m³/h	780/660/540	780/660/540	966/840/678	966/840/678	1,092/912/732	1,164/978/798	1,488/1,230/978	1,980/1,680/1,380
Noise Level (Ceiling	g) dB(A)	39/35/30	39/35/30	45/41/37	45/41/37	43/39/34	45/40/36	51/46/40	50/46/42
Noise Level (Floor)	dB(A)	43/38/35	43/38/35	48/44/40	48/44/40	46/41/37	48/43/39	54/49/43	55/50/46
Outer Dimensions	mm	990x680x230	990x680x230	990x680x230	990x680x230	1,285x680x230	1,285×680×230	1,285×680×230	1,580x680x230
Net Weight	kg	31	31	32	32	39	40	41	47
Gross Weight	kg	38	38	39	39	46	47	48	56
Refrigerant				R	410A(Nitrogen-charg	ged for Corrosion-resi	stance)		
Piping Connections					Flare-nut Conr	ection(with Flare Nut	s)		
Liquid Line	mm	Φ6.35	Φ6.35	Ф9.53	Ф9.53	Ф9.53	Φ9.53	Φ9.53	Ф9.53
Gas Line	mm	Φ15.88	Ф15.88	Ф15.88	Φ15.88	Φ15.88	Φ15.88	Ф15.88	Φ15.88
Condensate Drain					VP25(Ou	iter Diameter Φ32)		-	
Packing Dimensions	mm		1,110	x830x340			1,400x830x340		1,690x830x340
Speed-up Setting HH1	m³/h	852	852	1,068	1,068	1,188	1,272	1,620	2,160
Speed-up Setting HH2	m³/h	960	960	1,200	1,200	1,338	1,410	1,752	2,244

NOTES: 1.The nominal cooling capacity and heating capacity are based on the following conditions: 2. The sound pressure level is based on the following condations: **Cooling Operation Conditions**

Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

1.0m beneath the unit,1.0m from Discharge Grille. The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field. When bottom air inlet is adopted, sound pressure will increase according to factors such as installation

Indoor u			Wall Mounted Type								
Model Power	AC1Ф220V ~240V/50Hz	AVS-07URCSABA	AVS-09URCSABA	AVS-12URCSABA	AVS-14URCSABA	AVS-17URCSABA	AVS-18URCSBBA	AVS-22URCSBBA	AVS-24URCSBBA		
Supply	AC1Ф220V/ 60Hz	AVS-07UR2SABA	AVS-09UR2SABA	AVS-12UR2SABA	AVS-14UR2SABA	AVS-17UR2SABA	AVS-18UR2SBBA	AVS-22UR2SBBA	AVS-24UR2SBBA		
Nominal Cooling	kW	2.2	2.8	3.6	4.0	5.0	5.6	6.3	7.1		
Capacity	kcalh	1,900	2,400	3,100	3,450	4,300	4,816	5,418	6,106		
	Btu/h	7,500	9,500	12,300	13,600	17,000	19,100	21,500	24,200		
Nominal Heating	kW	2.5	3.3	4.0	4.5	5.6	6.3	7.1	8		
Capacity	kcalh	2,150	2,800	3,450	3,900	4,800	5,418	6,106	6,880		
	Btu/h	8,500	11,100	13,600	15,300	19,100	21,500	24,200	27,300		
Indoor Fan Air Flow Rate (High/Medium/Low/Mute)	m³/h	660/590/520/460	660/590/520/460	830/660/520/460	830/660/520/460	900/750/590/460	893/782/671/582	1,006/893/716/621	1,122/984/804/649		
Sound Pressure Level (High/Medium/Low/Mute)	dB(A)	39/34/32/28	39/34/32/28	43/39/32/28	43/39/32/28	45/40/34/29	41/37/34/30	44/41/36/31	46/43/38/33		
Net Weight	kg	13.5	13.5	13.5	13.5	13.5	16.0	16.0	16.0		
Gross Weight	kg	17.0	17.0	17.0	17.0	17.0	20.0	20.0	20.0		
Refrigerant			R410A(Nitrogen-charged for Corrosion-resistance)								
Motor Power	W	50	50	60	60	65	62	72	82		
Connections Refrigerant Piping					Flare-nut Connection	n(with Flare Nuts)					
Liquid Line	mm	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф9.53	Ф9.53	Ф9.53		
Gas Line	mm	Φ12.7	Φ12.7	Φ12.7	Φ12.7	Ф12.7	Ф15.88	Ф15.88	Ф15.88		
Condensate Drain					VP	16					
Outer Dimensions (H×W×D)	mm	315×960×230	315×960×230	315×960×230	315×960×230	315×960×230	315×1,120×230	315×1,120×230	315×1,120×230		
Packing Outer Dimensions(H×W×D)	mm	445×1,080×355	445×1,080×355	445×1,080×355	445×1,080×355	445×1,080×355	438/1,238/349	438/1,238/349	438/1,238/349		
Approximate Packing Measuremen	m ³	0.17	0.17	0.17	0.17	0.17	0.19	0.19	0.19		
Wireless Remote Controller/Receiver					HYE-L01+F	Receiver					
Wired Remote Controller		Option	Option	Option	Option	Option	Option	Option	Option		
Fan motor		PG Fan motor	PG Fan motor	PG Fan motor	PG Fan motor	PG Fan motor	PG Fan motor	PG Fan motor	PG Fan motor		
Drain Pump		NO	NO	NO	NO	NO	NO	NO	NO		

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: 2. The sound pressure level is based on the following conditions:

Cooling Operation Conditions Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB) Piping Length: 7.5 Meters Piping Lift: 0 Meter

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB). Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB) mode and the room structure.

HI-FLEXIS 60

1.1m beneath the unit and 1.0m from inlet grille.

Voltage of the power source for the indoor fan motor is 220V.

In case of the power source of 240V, the sound pressure level increases by about 1~2dB. The above data was measured in an anechoic chamber so that the reflected sound should be taken into consideration in the field.

Floor Concealed Type

Compact Design Fitting Into a Tiny Space

The design places special emphasis on the compatibility with the interior design as well as space saving design, allowing it to fit perfectly into the space below a bay window. So compact that it fits into even a tiny space.

Two-level static pressure available

The air can be reach to every part of the room.

High static pressure achieves long distance air exhaust.

Perfectly fit the indoor decoration No matter what kind of decoration style it is, Hisense floor concealed type can be able to match it.

Hidden installation, space saving

Hisense floor concealed type can be installed in the decoration space, which is covered by the decoration.

Indoor unit	Floor Concealed Type						
Model Power Supply	AC1Ф, 220~240V/50Hz	AVH-09UXCSAA	AVH-14UXCSAA	AVH-18UXCSBA	AVH-24UXCSBA		
	AC1Ф, 220V/60Hz	AVH-09UX2SAA	AVH-14UX2SAA	AVH-18UX2SBA	AVH-24UX2SBA		
	kW	2.8	4.3	5.6	7.1		
Nominal Cooling Capacity	kcal/h	2,400	3,700	4,800	6,100		
	Btu/h	9,600	14,700	19,100	24,200		
	kW	3.3	4.9	6.5	8.5		
Nominal Heating Capacity	kcal/h	2,800	4,200	5,600	7,300		
	Btu/h	11,300	16,700	22,200	29,000		
Noise Level (H/M/L)	dB(A)	34-31-27	40-36-34	41-36-32	44-40-36		
Cabinet Color			Silky White				
	H-mm	620	620	620	620		
Outer Dimensions	W-mm	948+139	948+139	1,218+139	1,218+139		
	D-mm	202	202	202	202		
Net Weight	kg	18	22	26	27		
Air Flow Rate (H/M/L)	m³/h	510/450/380	620/540/480	890/740/630	980/830/710		
Motor Power	W	50	80	90	120		
Piping Connections		Fla	re-nut Connection(with Flare Nuts))			
Liquid Line	mm	Ф6.35	Φ6.35	Φ6.35	Ф9.53		
Gas Line	mm	Φ12.7	Ф12.7	Φ15.88	Φ15.88		
Condensate Drain		VP25	VP25	VP25	VP25		
Packing Volume	m³	0.19	0.19	0.23	0.23		

NOTES: 1. The nominal cooling capacity and heating capacity are based on the following conditions: Cooling Operation Conditions Indoor Air Inlet Temperature: 27°C DB(80°F DB), 19.0°C WB(66.2°F WB) Outdoor Air Inlet Temperature: 35°C DB(95°F DB)

2. The sound pressure level is based on the following conditions: 1.5m meters from the unit and 1.5m meters from floor level. The above data was measured in an anechoic chamber so that reflected sound should be taken into consideration in the field.

Piping Length: 7.5 Meters Piping Lift: 0 Meter Heating Operation Conditions Indoor Air Inlet Temperature: 20°C DB(68°F DB).

Outdoor Air Inlet Temperature: 7°C DB(45°F DB), 6°C WB(43°F WB)

The intelligent control system of Hisense central air conditioning can realize automatic control through one computer, which makes it easy to learn the overall system operation and detect and solve problems promptly. Meanwhile this system can achieve electricity household metering with humanized intelligent control and efficient and convenient management to make users enjoy the modern intelligent life.

 $\mathbf{\overline{}}$

CONTROL SYSTEM WITH HIGH INTELLIGENCE

Wired Controller

Main Functions

- Cooling/Heating/Dry/Fan/Auto
- Holiday Setting
- Error Code Display
- Timer

- Weekly Timer
 - Error History Display
 - Air Filter Cleaning Reminding

Fan speed/Swing Louver

HYXE-J01H

- Main Functions
- Cooling/Heating/Dry/Fan/Auto
 Max. 16 indoor units can be connected
- Multiple Speed
- Swing Louver
- 72-hour Timer
- Optional setting
- 0.5 °C temperature Setting

3D airflow Setting

- One Touch Test Run

Temperature Setting

Address Setting

Check

Lock

HYXE-VA01

Wireless Controller

Main Functions

- ◆ 86×86mm smart size
- Multiple speed/Swing louver
- Air filter cleaning reminding
- Backlight

- Temperature setting
- Check

Inserting

- Control Max.6 indoor units
- Cooling/Heating/Dry/Fan/Auto
- ◆ 72-hour Timer
- Error Code Display

Main Functions

- Cooling/Heating/Dry/Fan/Auto
- Icon function display
- Touch buttons
- Quiet
- Check

- Temperature Setting
- Air filter cleaning reminding
- Dehumidification
- Fan Speed/Swing Louver
- 3 or 6 Speed Control

- Optional setting
- Touch Key

Test Run

Timer

HYXE-S01H

Main Functions

- Cooling/Heating/Dry/Fan/Auto
- Temperature setting
- Quiet mode setting
- Dehumidification

24-hour Timer

Receiver Kit for Wireless Control - Optional

- FAN TIMER

HYXE-M01H

Dehumidification

 Error Code Display Check

 Backlight control • Air Filter Cleaning Reminder

HI-FLEXIS 64

- ◆ 6 Fan speed/Swing louver
- Sleep mode setting

HYE-W01

Centralized Controller

Main Functions

- Group Control(ON/OFF)
- Indoor Unit Power OFF Reminder
- Indoor Units Auto Login in
 Error Reminder

Main Functions

- Clock Setting
- Backlight
- Power Indicator
- Alarm history
- Holiday Setting
- Backlight Brightness Adjusting

Time display mode setting

- Service Hotline Setting
- Energy saving control mode
- Setting Temperature limitation
- Backlight Auto-Off Time Adjusting
- Weekly Schedule

CRAIL OF Marine

HYJM-S01H

Smooth Appearance

Easy Installation

	Туре		Wired Cor	ntroller		Wireless Controller
	Model	HYXE-VA01	HYXE-J01H	HYXE-M01H	HYXE-S01H	HYE-W01
	Picture					
	Duct Type	0	0	0	0	0
	4-Way Cassette	0	0	0	0	0
	4-Way Cassette (compact)	0	0	0	0	\checkmark
	1-Way Cassette	0	0	0	×	0
Suit for ndoor unit	2-Way Cassette	0	0	0	×	0
	Ceiling&Floor	0	0	0	0	\checkmark
	Wall Mounted	0	0	0	0	\checkmark
	Floor Conocealed	0	0	0	×	0
	DC Low Height	0	0	0	×	0
	All Fresh Air Indoor Unit	0	0	0	0	0
	Heat Recovery Ventilation	0	0	\checkmark	\times	×
	3D Air-flow Panel	0	0	0	×	0
	AHU KIT	0	0	×	×	×

	Туре		Receiver Kit		Centralized Controller	ON/OFF
	Model	HYRE-V02H	HYRE-T02H	HYRE-X01H	HYJM-S01H	HYJ-J01H
	Picture	Home			•	Homost me 4 3 4 4 3 4 6 6 6 6 8 6 6 8 6 10 8 6
	Duct Type	0	×	×	0	0
	4-Way Cassette	×	0	×	0	0
	4-Way Cassette (compact)	×	×	×	0	0
	1-Way Cassette	×	\times	\bigcirc	0	0
Suit for	2-Way Cassette	0	\times	\times	0	0
indoor unit	Ceiling&Floor	×	\times	×	0	\bigcirc
	Wall Mounted	×	\times	×	0	0
	Floor Conocealed	0	\times	\times	0	\bigcirc
	DC Low Height	0	\times	×	0	\bigcirc
	All Fresh Air Indoor Unit	0	\times	×	0	0
	Heat Recovery Ventilation	×	×	×	0	0
	3D Air-flow Panel	0	×	×	×	×
	AHU KIT	×	×	×	0	×

Hi-Mit

Main Functions

- ON/OFF control, Operation mode, Temperature setting, Airflow Setting
- Operate according to a schedule
- Display the alarm code
- off home mode and energy-saving mode
- Max. 32 indoor units can be controlled
- Dimension: 215×137×38 mm

Adapter Specifications

Model name	HYJE-H01H	Operating temperature	0°C ~40°C
Input voltage	AC 110~240V 60Hz	Maximum operating current	10mA (220 V)

*The standard parts of this system includes the converter HYJE-H01H and the client control software HRM-G01 (it can be downloaded and installed in the APP STORE), The IPAD is the registered trademark of Apple Inc.

Building Management System

Compatible to multiple communication protocols of BACnet, MODBUS etc. Connectible to BMS or Smart Home System via HC-A64BNP or HCPC-H2M1C all of which can connect to Max. 64 indoor units.

Real-time operation status monitoring on request. Operation commands from monitoring center

HC-A64BNP BACnet

- Running-state Monitoring / On-off Setting
- Airflow Setting and Monitoring
- Wireless Controller Permission/Prohibition Indoor Temp. Monitoring

- Operating Mode Setting
- Temperature Setting and Monitoring
- Alarm Monitoring and Code Display
- Communication Failure Display
- Filter Cleaning Prompting

HCPC-H2M1C Modbus

Converter Specifications

	HC-A64BNP	HCPC-H2M1C	
Converter		Million trace	
BMS connection	BACnet	Modbus	
Power supply	AC100~240V±10%(60Hz)	AC100~240V±10%(60Hz)	
Connectable central controller	HYJM-S01H	HYJM-S01H, Hi-Dom, HYJ-J01H	
MAX.number of connectable indoor units	64	64	
Dimension (LxWxH)	240mm×204mm×70mm	220mm×140mm×50mm	

Hi-Dom Air Conditioning Management System

Centralized Control

Hi-Dom air conditioning management system adopts communication bus connection, air conditioning indoor units are connected to the computer through network converter; the system is controlled automatically by a computer with powerful functions. One single computer control system can manage 4,096 indoor units.

Main Functions

 Running-state Monitoring 	 A
Determine the Temperature Limit	◆ A
Running Records Display	 N
 Controller Prohibition Function 	• 5

All the indoor units and outdoor units connected with one adapter comprise one communication BUS system . Max.128 indoor units can be connected to an adapter Max.32 adapters can be controlled by one computer. Max.4096 indoor units are under control.

- Access Control
- Automatic Operation According to Settings
- **Multifunction Alarm**
- Service Monitoring

Test	[logout]	2015-1-4	Sun		
				Small	Set
other	Technol	So	Develop	^	ON OFF 19-30
۲	ON 25°C Heat Low		OFF 26℃ Heat High	ш	🔆 🦗 🎉 💰
west	Departm	Ce	Departm		\$ & &
۲	ON 30℃ Heat High	۲	ON 30°C Heat High	ļ	High Mid Low
So	Departm	So	Quality		E
	OFF 26°C Heat High		OFF 26℃ Cool High		Prohibited use
So	Prices do	Ea	Prices do		Z5℃ Temp Min 19 - 30
۲	OFF 26℃ Heat High		OFF 26℃ 🌖 Heat Low		Cool only
We	Departm	Ea	Departm		Set Relieve
۲	OFF 26°C 😏 Heat High	۵	OFF 26℃ Dry Mid		Detail info Model:1
No	Develop	So	Develop	÷	Cap:16 Address:1_12_6

Electric Charge Allocation

Hi-Dom air conditioning management system consists of meter reading system and air conditioning management system. In accordance with the operation time and capacity output of indoor and outdoor units, the electric charge allocation software allocates the total power consumption to each indoor unit.

Note:Due to different laws and regulations in different regions, Hisense electrical charge calculation software need to customize processing in project according to the users' requirement.

Hi-Dom System Specifications

	Model Name	Power Supply	Dimension(mm)	Charging Function
Adapter	HCCS-H128H2C1YM	DC 12V	180×110×40	With charging function
(Hi-Dom)	HCCS-H128H2C1NM	DC 12V	180×110×40	Without charging function
	HCCS-H247R4C1E	DC 12V	180×110×40	

Note:HCCS-H247R4C1E is an essential equipment for HCCS-H128H2C1YM to charging.

Filter

Ceiling Ducted Type(Slim)

Model	Applicable models
AVE-07~14*	HF-40L-ZFE

Ceiling Ducted Type (Low&High Static Pressure)

Model		Applicable models	Picture	
	AVD-07~14*	KW-PP1Q		
	AVD-17~24*	KW-PP2Q		
	AVD-27~38*	KW-PP3Q		
	AVD-48~54*	KW-PP4Q		
	AVD-76*	HF-224L-FE		
	AVD-96*	HF-280L-FE		

Ceiling Ducted Type (Low Height& DC Low Height)

Model	Applicable models	Picture
AVE-07~14*	KW-PP5Q	
AVE-17~24*	KW-PP6Q	

Drain Pump—Optional

Model	Power supply	Consumption	MAX. Lift (mm)	Applicable models	HPS-132/HPS-162	HPS-151
HPS-132	AC 220~240V(60Hz)	9±1.5 W	900	For Ceiling ducted type(0.8~2.5HP)		
HPS-162	AC 220~240V(60Hz)	9±1.5 W	900	For Ceiling ducted type(3.0~6.0HP)		
HPS-151	AC 220~240V(60Hz)	9±1.5 W	600	External type,for general purpose(0.8~10HP)		

3D Air-Flow Panel

Panel Model	Applicable Models	Outer Dimensions (H×W×D)	Interface Dimension (H×W×D)
HP-DB-NA	0.8~1.5HP	180×950×70	750×130
HP-EB-NA	1.8~2.5HP	180×1220×70	1020×130

Note:For Ceiling Ducted Type (DC Low-height)

Hi-FLEXIS 72

Picture